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Security requirements for vehicle security gateways

Ben Gardiner (NMFTA), John Maag (Cummins), Dr. Ken Tindell (JK Energy )

CAN security gateways are commonly deployed to keep untrusted parts of a vehicle 
away from the trusted part. Although conceptually simple, they often introduce subtle 
problems that can escape detection in testing and only manifest after a vehicle is 
deployed or experiences a sophisticated security attack. In particular, there are common 
problems with the handling of transmitted frames that can lead to the intermittent failure 
of	cryptographic	protections,	loss	or	corruption	of	messages	and	disruption	of	the	traffic	
on the protected CAN bus. Avoiding these problems are part of the requiremements for 
a robust security gateway.

1. Introduction

A security gateway is a common technique 
for securing a CAN bus (alongside 
cryptographic messaging, intrusion detection  
and hardware security [1]). The main 
purpose is to protect the hard real-time 
mechatronic control buses from being 
disrupted by vulnerable devices with wireless 
connections, such as telematic control 
units (TCUs) and in-vehicle infotainment 
(IVI) systems. This is necessary because 
when (and for sufficiently complex systems 
it is ‘when’ not ‘if’ [2]) those devices are 
compromised in an attack, the attacker 
cannot compromise the fundamental 
controls of a vehicle.

There is a second use of a CAN security 
gateway in a vehicle network: to allow a  
CAN bus to be partitioned into segments 
so that if one of the segments becomes 
physically compromised then other seg-
ments can continue to operate without 
disruption. For example, the CAN Injection 
attack [3] gains access to a CAN bus  
via an easily reached part of the car (e.g. 
a headlight connector) allowing a theft 
device to spoof messages (e.g. commands 
to disable the immobilizer or unlock the  
doors). A security gateway between an 
easily accessed CAN bus and the rest of the 
car would prevent this.

Figure 1: Conceptually simple CAN security 
gateway

A common way to define security is through 
the ‘CIA Triad’: Confidentiality, Integrity, 
Availability. For CAN bus, the most common 
attack is an integrity attack: the CAN ID 
is chosen by an attacker to send forged 
messages so that receivers will act upon it 
as if it were genuine.

And so a CAN security gateway is con-
ceptually simple: a device that connects to 
two CAN buses and filters frames so that 
only the appropriate subset are copied from 
one bus to the other (Figure 1). 

But there are many subtle details, especially 
with respect to availability, that if not handled
correctly result in an insecure or non-
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Figure 3: A gateway can cause a replay 
attack false alarm

CAN frames are typically re-ordered not by 
security gateway software explicitly written 
to do this but by CAN controller hardware. 
Most CAN controllers have a transmit priority 
queue, where the next frame in the queue 
is not the head of the queue but the frame 
with the lowest CAN ID. Some controller 
hardware implements this with a set of 
comparator circuits comparing the ID of 
each frame buffer slot, and some hardware 
implements this with a state machine that 
sequentially scans down the frame buffer 
slots, keeping track of the lowest numeric 
value seen so far. In any case, there is a 
problem when there are two or more CAN 
frames in the queue with the same ID: the 
hardware must decide which of these to 
send first. In most cases, this ‘tie’ is resolved 
arbitrarily (such as the number of the frame 
buffer slot, or the last frame seen in the 
sequential scan).

Figure 4: Sequence of transmit queue 
states, frames with ID 0x10 are transmitted 
out of order

One reason for two frames with the same 
ID being in the transmit queue at the same 
time is because of Frame Arrival Jitter. In 
general, jitter is the variability of the specific 
timing of a
periodic event. Most CAN frames in a vehicle 
control network are generated periodically 
(often they carry data produced by a periodic 
control loop in an ECU). But although they 
are generated strictly periodically (i.e. 
there is a fixed time between generating 
one frame and the next one), they do not 

functioning network. The National Motor 
Freight Transport Association (NMFTA) in 
the US developed a set of requirements 
for security gateways to ensure correct 
behavior. These requirements are defined 
in a formal requirements language and have 
been made public [5]. This paper draws  
on those requirements and focuses on  
two vital aspects of a CAN security gateway: 
1) Frame transmission and 2) Frame 
dropping.

2. Frame Transmission

The transmission of CAN frames might 
appear simple but there are subtle pitfalls. 
The first of these surrounds the order of 
transmission. It is very important that a CAN 
security gateway does not re-order frames 
because the order of events can be very 
important for applications. For example, the 
ISO-TP [6] transport protocol assembles a 
large message from a sequence of CAN 
frames, and if frames are re-ordered then 
the reception of the whole message can fail 
(there are sequence numbers attached to 
each CAN frame, but some implementations 
simply check for a gap and then trigger an 
error, and some even ignore the sequence 
number).

Figure 2: Gateway 
causes ISO-TP 
messages to be 
lost or corrupted

This problem also occurs when frames are 
cryptographically protected, for example  
with SecOC [7] or CryptoCAN [8]. Crypto-
graphic schemes are required to protect 
against a Replay Attack [9], where an 
attacker copies a legitimate frame and re-
sends it later to get a receiver to act upon 
it. These schemes will typically see a re-
ordered frame as an attempted replay 
attack, and this will often result in a false 
alarm, and too many of these will result in 
real attacks being ignored.
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a FIFO queue contains a low priority frame, 
with urgent high priority frames behind 
it. The frame at the front of the queue will 
not win arbitration for a long time if the bus 
becomes busy for a long time with higher 
priority traffic, and thus the urgent frame is 
delayed for a long time (Figure 7).

Figure 7: Priority inversion on CAN bus

As for frame jitter, priority inversion can 
be very intermittent: it might not show 
up in testing because it depends on the 
particular sequence of CAN frames being 
queued and transmitted on the bus. But 
the consequences are no less severe: an 
urgent 10ms period frame might sometimes 
be delayed for 90ms, and this could lead 
to all kinds of failures (including triggering 
timeouts where a component was assumed 
to have failed). The consequences of such 
failures in a production vehicle could be 
severe.

The resolution of this seeming contradiction 
between the need for both priority and FIFO
transmission is to observe that the 
requirement for FIFO transmission is with 
respect to frames with the same ID. This 
means that the correct frame transmission 
policy in a gateway is not to have just a 
priority queue but one that is fed by a FIFO 
for each frame ID (Figure 8).

Figure 8: FIFO queues feeding into a 
priority queue

There is one further problem that frame jitter 
causes with respect to a security gateway: 
it can damage the real-time properties of 

arrive at receivers with the same timing: the 
underlying period is the same but the arrival 
time has jitter (Figure 5).

Figure 5: Frames are queued periodically 
but arrival times are jittered due to variable 
times waiting to win arbitration

Jitter means that if periodic frames are 
simply copied from an incoming CAN 
controller FIFO
to an outgoing priority queue then more than 
one frame with the same ID can be in the 
queue at the same time (Figure 6).

Frame jitter is a particularly difficult problem 
because the jitter of a given frame observed 
at run time depends on the specific traffic 
pattern on the two CAN buses. During testing 
there may be no observed re-ordering of 
CAN frames but under particular loading 
of the two buses it may become apparent 
by highly intermittent failures of security or 
ISO-TP messaging. Tracing the cause of 
such faults may not even be possible in a 
post-production environment, and in any 
case the fault is not due to a simple bug  
but a design flaw in the security gateway.

Figure 6: Frame jitter causing frame re-
ordering

At first sight, the solution to the re-ordering 
problem is to adopt FIFO buffering in the 
transmit queue. However, this leads directly 
to another problem: CAN Priority Inversion 
[4]. Priority inversion occurs when the front of 
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the destination bus. To see why, look again 
at Figure 6. The arrival jitter from CAN A 
causes frames to ‘bunch up’ in time, and  
by queueing them on the CAN B imme-
diately, the security gateway has caused 
two frames to be queued in a much shorter  
time than they were on CAN A. This means 
that over a short time interval, the bus  
load due to the forwarded frame is much 
higher (over a long interval the bus load is 
of course the same, but real-time systems 
are ones where short-term utilisation is 
important).

Figure 9: Deferring early frame arrivals

This higher short-term bus load caused by 
a security gateway means that an attacker 
could craft a traffic pattern on a CAN bus 
and induce a timing fault on a CAN bus 
protected by a security gateway, leading 
to consequent failures (such as missed 
timeouts, as discussed above). In the CIA 
Triad this is an example of a failure of 
availability – a type of denial-of-service 
attack.

To defend against this type of attack (and 
to eliminate intermittent timing faults due to 
jitter) the security gateway should implement 
frame deferral: a frame should not be put 
into its transmit FIFO until at least one frame 
period time has elapsed since the previous 
frame was queued (Figure 9).

By deferring a frame until the expiry of its 
period time, the timing behavior on the 
destination bus is no different than if that 
frame were queued directly by the original 
transmitter ECU. The only difference is that 
deferral adds to the latency of the second 
frame in this scenario. But this additional 
latency through the gateway does not cause 
the worst-case latency to rise: in effect, jitter 
causes frames to appear earlier than they 
might have and the deferral mechanism only 
applies to early frames. By deferring early 
frames, the security gateway can maintain 

worstcase latency guarantees made by 
existing CAN timing analysis [10] and so 
maintain end-to-end latency guarantees 
from one CAN bus to another.

3. Frame dropping

CAN is unique amongst the common field 
buses by providing Atomic Broadcast. This 
is an incredibly useful property for building 
robust systems, and many applications rely 
on it (even if unwittingly). When a message 
is marked as ‘sent’ at a transmitter then the 
transmitter knows that every online node 
received a valid copy of that message. 
In effect, CAN implements consensus 
in hardware. With other protocols, such 
as Ethernet, a message that is received 
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incorrectly (e.g. the CRC – or ‘FCS’ for 
Ethernet frames – does not match) then the 
frame is discarded. This means that simple 
noise on the bus can lead to divergence 
between nodes in the view of the state of 
a system (one receiver sees only an old 
sensor reading and another a newer one). 
Distributed consensus is a key building 
block of robust distributed real-time control 
systems, and obtaining this property with 
software protocols on top of a non-robust 
fieldbus is difficult. Indeed, Lamport’s 
Byzantine Generals Problem arose from a 
research project trying to do that [11].

This leads to an important requirement 
for a security gateway: to maintain 
CAN’s distributed consensus property. 
Introducing a security gateway should 
not result in breaking the assumptions of 
existing applications, especially if those 
assumptions are implicit. In other words, 
a security gateway must not drop frames 
(unless of course there is a genuine fault in 
the system, where ‘fault’ includes an attack 
on the system).

A security gateway is, of course, obliged 
to drop frames in order to defend against 
an attack. For example, diagnostic tester 
frames should be dropped unless there 
is a legitimate diagnostic tester attached, 
frames in a flood attack should be dropped, 
etc. But a security gateway must also not 
drop frames due to insufficient buffer space 
in a transient overload.

On the receive side, this means that frames 
must be received and processed at the 
full rate of the CAN bus: if two frames with 
the same ID arrive back-to-back then the 
CAN controller hardware and its driver 
software must not lose one of those frames. 
Generally this means handling CAN frames 
via interrupt service routines (ISRs), and 
the scheduling of the CPU must be able to 
handle all interrupts from all CAN controllers 
within their respective deadlines (as well 
as all other demands on the CPU). This 
will typically require careful scheduling 
of the CPU and knowledge of the worst-
case execution times of ISRs. For the 
transmission of CAN frames, there must be 

enough space to store all pending frames 
(including deferred frames). One technique 
for bounding the buffer space is, like 
bounding stack space in ECU software, to 
keep increasing it until it appears there are 
no more overflows. Obviously this is a poor 
technique because it relies upon having seen 
the worst-case scenario during testing (and 
therefore very unlikely to have observed the 
worst-case pattern of traffic on both CAN 
buses simultaneously). It is better to instead 
bound the buffer space by calculating the 
longest time a given frame can take in its 
queue (i.e. its worst-case latency on the CAN 
destination bus), the time it can deferred but 
stored, and the maximum number of times 
it could legitimately be received from the 
source CAN bus during these times.

4. Summary and conclusions

A security gateway has to meet non-functional 
requirements to adequately defend a CAN 
bus from attack and also not to introduce 
faults into the system. The NMFTA has 
enumerated all the requirements for such a 
gateway, in a formal description language, 
and has made these publicly available.

There are very specific requirements of a 
security gateway to protect the real-time and
distributed consensus properties of CAN, 
and these demand the careful handling of 
the ordering and buffering of CAN frames 
for transmission to avoid pitfalls of common 
CAN controller hardware designs and frame 
arrival jitter on CAN buses. Not doing this 
at the design stage may lead to faults 
during transient overload conditions that 
are not feasible to observe during testing 
but will likely manifest during the millions 
of collective hours of run-time in production 
vehicles, leading to problems with reliability 
and security that could cause business 
level failures. The ability to bound the real-
time behavior of the CAN bus is a vital 
component in ensuring that problems can 
be found analytically during development 
and not left for others to discover in the  
field.
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