
iCC 2024 CAN in Automation

84

Security requirements for vehicle security gateways

Ben Gardiner (NMFTA), John Maag (Cummins), Dr. Ken Tindell (JK Energy)

CAN security gateways are commonly deployed to keep untrusted parts of a vehicle
away from the trusted part. Although conceptually simple, they often introduce subtle
problems that can escape detection in testing and only manifest after a vehicle is
deployed or experiences a sophisticated security attack. In particular, there are common
problems with the handling of transmitted frames that can lead to the intermittent failure
of	cryptographic	protections,	loss	or	corruption	of	messages	and	disruption	of	the	traffic	
on the protected CAN bus. Avoiding these problems are part of the requiremements for
a robust security gateway.

1. Introduction

A security gateway is a common technique
for securing a CAN bus (alongside
cryptographic messaging, intrusion detection
and hardware security [1]). The main
purpose is to protect the hard real-time
mechatronic control buses from being
disrupted by vulnerable devices with wireless
connections, such as telematic control
units (TCUs) and in-vehicle infotainment
(IVI) systems. This is necessary because
when (and for sufficiently complex systems
it is ‘when’ not ‘if’ [2]) those devices are
compromised in an attack, the attacker
cannot compromise the fundamental
controls of a vehicle.

There is a second use of a CAN security
gateway in a vehicle network: to allow a
CAN bus to be partitioned into segments
so that if one of the segments becomes
physically compromised then other seg-
ments can continue to operate without
disruption. For example, the CAN Injection
attack [3] gains access to a CAN bus
via an easily reached part of the car (e.g.
a headlight connector) allowing a theft
device to spoof messages (e.g. commands
to disable the immobilizer or unlock the
doors). A security gateway between an
easily accessed CAN bus and the rest of the
car would prevent this.

Figure 1: Conceptually simple CAN security
gateway

A common way to define security is through
the ‘CIA Triad’: Confidentiality, Integrity,
Availability. For CAN bus, the most common
attack is an integrity attack: the CAN ID
is chosen by an attacker to send forged
messages so that receivers will act upon it
as if it were genuine.

And so a CAN security gateway is con-
ceptually simple: a device that connects to
two CAN buses and filters frames so that
only the appropriate subset are copied from
one bus to the other (Figure 1).

But there are many subtle details, especially
with respect to availability, that if not handled
correctly result in an insecure or non-

iCC 2024 CAN in Automation

85

Figure 3: A gateway can cause a replay
attack false alarm

CAN frames are typically re-ordered not by
security gateway software explicitly written
to do this but by CAN controller hardware.
Most CAN controllers have a transmit priority
queue, where the next frame in the queue
is not the head of the queue but the frame
with the lowest CAN ID. Some controller
hardware implements this with a set of
comparator circuits comparing the ID of
each frame buffer slot, and some hardware
implements this with a state machine that
sequentially scans down the frame buffer
slots, keeping track of the lowest numeric
value seen so far. In any case, there is a
problem when there are two or more CAN
frames in the queue with the same ID: the
hardware must decide which of these to
send first. In most cases, this ‘tie’ is resolved
arbitrarily (such as the number of the frame
buffer slot, or the last frame seen in the
sequential scan).

Figure 4: Sequence of transmit queue
states, frames with ID 0x10 are transmitted
out of order

One reason for two frames with the same
ID being in the transmit queue at the same
time is because of Frame Arrival Jitter. In
general, jitter is the variability of the specific
timing of a
periodic event. Most CAN frames in a vehicle
control network are generated periodically
(often they carry data produced by a periodic
control loop in an ECU). But although they
are generated strictly periodically (i.e.
there is a fixed time between generating
one frame and the next one), they do not

functioning network. The National Motor
Freight Transport Association (NMFTA) in
the US developed a set of requirements
for security gateways to ensure correct
behavior. These requirements are defined
in a formal requirements language and have
been made public [5]. This paper draws
on those requirements and focuses on
two vital aspects of a CAN security gateway:
1) Frame transmission and 2) Frame
dropping.

2. Frame Transmission

The transmission of CAN frames might
appear simple but there are subtle pitfalls.
The first of these surrounds the order of
transmission. It is very important that a CAN
security gateway does not re-order frames
because the order of events can be very
important for applications. For example, the
ISO-TP [6] transport protocol assembles a
large message from a sequence of CAN
frames, and if frames are re-ordered then
the reception of the whole message can fail
(there are sequence numbers attached to
each CAN frame, but some implementations
simply check for a gap and then trigger an
error, and some even ignore the sequence
number).

Figure 2: Gateway
causes ISO-TP
messages to be
lost or corrupted

This problem also occurs when frames are
cryptographically protected, for example
with SecOC [7] or CryptoCAN [8]. Crypto-
graphic schemes are required to protect
against a Replay Attack [9], where an
attacker copies a legitimate frame and re-
sends it later to get a receiver to act upon
it. These schemes will typically see a re-
ordered frame as an attempted replay
attack, and this will often result in a false
alarm, and too many of these will result in
real attacks being ignored.

iCC 2024 CAN in Automation

86

a FIFO queue contains a low priority frame,
with urgent high priority frames behind
it. The frame at the front of the queue will
not win arbitration for a long time if the bus
becomes busy for a long time with higher
priority traffic, and thus the urgent frame is
delayed for a long time (Figure 7).

Figure 7: Priority inversion on CAN bus

As for frame jitter, priority inversion can
be very intermittent: it might not show
up in testing because it depends on the
particular sequence of CAN frames being
queued and transmitted on the bus. But
the consequences are no less severe: an
urgent 10ms period frame might sometimes
be delayed for 90ms, and this could lead
to all kinds of failures (including triggering
timeouts where a component was assumed
to have failed). The consequences of such
failures in a production vehicle could be
severe.

The resolution of this seeming contradiction
between the need for both priority and FIFO
transmission is to observe that the
requirement for FIFO transmission is with
respect to frames with the same ID. This
means that the correct frame transmission
policy in a gateway is not to have just a
priority queue but one that is fed by a FIFO
for each frame ID (Figure 8).

Figure 8: FIFO queues feeding into a
priority queue

There is one further problem that frame jitter
causes with respect to a security gateway:
it can damage the real-time properties of

arrive at receivers with the same timing: the
underlying period is the same but the arrival
time has jitter (Figure 5).

Figure 5: Frames are queued periodically
but arrival times are jittered due to variable
times waiting to win arbitration

Jitter means that if periodic frames are
simply copied from an incoming CAN
controller FIFO
to an outgoing priority queue then more than
one frame with the same ID can be in the
queue at the same time (Figure 6).

Frame jitter is a particularly difficult problem
because the jitter of a given frame observed
at run time depends on the specific traffic
pattern on the two CAN buses. During testing
there may be no observed re-ordering of
CAN frames but under particular loading
of the two buses it may become apparent
by highly intermittent failures of security or
ISO-TP messaging. Tracing the cause of
such faults may not even be possible in a
post-production environment, and in any
case the fault is not due to a simple bug
but a design flaw in the security gateway.

Figure 6: Frame jitter causing frame re-
ordering

At first sight, the solution to the re-ordering
problem is to adopt FIFO buffering in the
transmit queue. However, this leads directly
to another problem: CAN Priority Inversion
[4]. Priority inversion occurs when the front of

iCC 2024 CAN in Automation

87

the destination bus. To see why, look again
at Figure 6. The arrival jitter from CAN A
causes frames to ‘bunch up’ in time, and
by queueing them on the CAN B imme-
diately, the security gateway has caused
two frames to be queued in a much shorter
time than they were on CAN A. This means
that over a short time interval, the bus
load due to the forwarded frame is much
higher (over a long interval the bus load is
of course the same, but real-time systems
are ones where short-term utilisation is
important).

Figure 9: Deferring early frame arrivals

This higher short-term bus load caused by
a security gateway means that an attacker
could craft a traffic pattern on a CAN bus
and induce a timing fault on a CAN bus
protected by a security gateway, leading
to consequent failures (such as missed
timeouts, as discussed above). In the CIA
Triad this is an example of a failure of
availability – a type of denial-of-service
attack.

To defend against this type of attack (and
to eliminate intermittent timing faults due to
jitter) the security gateway should implement
frame deferral: a frame should not be put
into its transmit FIFO until at least one frame
period time has elapsed since the previous
frame was queued (Figure 9).

By deferring a frame until the expiry of its
period time, the timing behavior on the
destination bus is no different than if that
frame were queued directly by the original
transmitter ECU. The only difference is that
deferral adds to the latency of the second
frame in this scenario. But this additional
latency through the gateway does not cause
the worst-case latency to rise: in effect, jitter
causes frames to appear earlier than they
might have and the deferral mechanism only
applies to early frames. By deferring early
frames, the security gateway can maintain

worstcase latency guarantees made by
existing CAN timing analysis [10] and so
maintain end-to-end latency guarantees
from one CAN bus to another.

3. Frame dropping

CAN is unique amongst the common field
buses by providing Atomic Broadcast. This
is an incredibly useful property for building
robust systems, and many applications rely
on it (even if unwittingly). When a message
is marked as ‘sent’ at a transmitter then the
transmitter knows that every online node
received a valid copy of that message.
In effect, CAN implements consensus
in hardware. With other protocols, such
as Ethernet, a message that is received

iCC 2024 CAN in Automation

88

incorrectly (e.g. the CRC – or ‘FCS’ for
Ethernet frames – does not match) then the
frame is discarded. This means that simple
noise on the bus can lead to divergence
between nodes in the view of the state of
a system (one receiver sees only an old
sensor reading and another a newer one).
Distributed consensus is a key building
block of robust distributed real-time control
systems, and obtaining this property with
software protocols on top of a non-robust
fieldbus is difficult. Indeed, Lamport’s
Byzantine Generals Problem arose from a
research project trying to do that [11].

This leads to an important requirement
for a security gateway: to maintain
CAN’s distributed consensus property.
Introducing a security gateway should
not result in breaking the assumptions of
existing applications, especially if those
assumptions are implicit. In other words,
a security gateway must not drop frames
(unless of course there is a genuine fault in
the system, where ‘fault’ includes an attack
on the system).

A security gateway is, of course, obliged
to drop frames in order to defend against
an attack. For example, diagnostic tester
frames should be dropped unless there
is a legitimate diagnostic tester attached,
frames in a flood attack should be dropped,
etc. But a security gateway must also not
drop frames due to insufficient buffer space
in a transient overload.

On the receive side, this means that frames
must be received and processed at the
full rate of the CAN bus: if two frames with
the same ID arrive back-to-back then the
CAN controller hardware and its driver
software must not lose one of those frames.
Generally this means handling CAN frames
via interrupt service routines (ISRs), and
the scheduling of the CPU must be able to
handle all interrupts from all CAN controllers
within their respective deadlines (as well
as all other demands on the CPU). This
will typically require careful scheduling
of the CPU and knowledge of the worst-
case execution times of ISRs. For the
transmission of CAN frames, there must be

enough space to store all pending frames
(including deferred frames). One technique
for bounding the buffer space is, like
bounding stack space in ECU software, to
keep increasing it until it appears there are
no more overflows. Obviously this is a poor
technique because it relies upon having seen
the worst-case scenario during testing (and
therefore very unlikely to have observed the
worst-case pattern of traffic on both CAN
buses simultaneously). It is better to instead
bound the buffer space by calculating the
longest time a given frame can take in its
queue (i.e. its worst-case latency on the CAN
destination bus), the time it can deferred but
stored, and the maximum number of times
it could legitimately be received from the
source CAN bus during these times.

4. Summary and conclusions

A security gateway has to meet non-functional
requirements to adequately defend a CAN
bus from attack and also not to introduce
faults into the system. The NMFTA has
enumerated all the requirements for such a
gateway, in a formal description language,
and has made these publicly available.

There are very specific requirements of a
security gateway to protect the real-time and
distributed consensus properties of CAN,
and these demand the careful handling of
the ordering and buffering of CAN frames
for transmission to avoid pitfalls of common
CAN controller hardware designs and frame
arrival jitter on CAN buses. Not doing this
at the design stage may lead to faults
during transient overload conditions that
are not feasible to observe during testing
but will likely manifest during the millions
of collective hours of run-time in production
vehicles, leading to problems with reliability
and security that could cause business
level failures. The ability to bound the real-
time behavior of the CAN bus is a vital
component in ensuring that problems can
be found analytically during development
and not left for others to discover in the
field.

iCC 2024 CAN in Automation

89

References

[1] Defending The CAN Bus: Security Gateways
 (https://kentindell.github.io/2021/11/24/can

security-part-3)
[2] Pwn2Own Automotive 2024 (https://vicone.

com/pwn2own-automotive)
[3] CVE-2023-29389 (https://nvd.nist.gov/vuln/

detail/CVE-2023-29389)
[4] CAN Priority Inversion (https://kentindell.

github.io/2020/06/29/can-priority-inversion)
[5] Implementation Requirements for Secured

Gateways, NMFTA (https://nmfta.org/
whitepaper/implementation-requirements-for-
secured-gateways)

[6] ISO 15765-2:2016 Road vehicles, Diagnostic
communication over Controller Area Network
(DoCAN) Part 2: Transport protocol and
network layer services

[7] Specification of Secure Onboard
ommunication Protocol, AUTOSAR 969
R23-11 2023-11-23

[8] Securing CAN: Introduction to CryptoCAN,
CAN Newsletter December 2022, (CAN in
Automation)

[9] Replay attack (https://en.wikipedia.org/wiki
Replay_attack)

[10] Guaranteeing Message Latencies on
Controller Area Network (CAN), K. Tindell
and A. Burns, Proceedings 1st International
CAN Conference, 1994

[11] The Byzantine Generals Problem, L.
Lamport, R. Shostak, M. Pease, ACM

 Transactions on Programming Languages
and SystemsVolume 4 Issue 3, 1982

Ben Gardiner, NMFTA
1001 N. Fairfax St., Ste. 600
US-22314 Alexandria, VA
www.nmfta.org

John Maag, Cummins
1900 McKinley Ave. MC 50197
US-47201 Columbus IN
www.cummins.com

Dr. Ken Tindell, JK Energy
Dutch House, Mustow Street
GB-IP33 1XL Bury St Edmunds, Suffolk
www.jkenergy.com

