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What information can eye diagrams provide 
for CAN?

Thomas Stüber (Teledyne LeCroy)

Eye diagrams are a popular method for quickly evaluating the signal integrity of serial 
data systems. In this article, we would like to explain how to generate eye diagrams and 
how they can be applied to CAN. Additionally, we will discuss how to generate separate 
eye diagrams for the arbitration and data phase of CAN signals, and what valuable 
information they provide. Finally, we will discuss how to use the information gained 
from the eye diagrams to evaluate a CAN network.

What is an eye diagram and how it is 
generated?

The eye diagram is a very simple method for 
evaluating the signal quality of serial data. It is 
a standard analysis tool for high-speed data 
signals such as PCI Express®, SAS, SATA, 
etc. It is much less commonly used for serial 
buses such as CAN bus, but it provides a 
simple way to characterize the signal quality. 

Unlike high-speed bus systems, the CAN 
bus transmits data in short bursts with blocks 
of bits. Acquiring multiple waveforms and 
“stacking” them on a persistence display is 
how the traditional eye diagram is formed, 
showing the history of all the acquisitions. 
Although this method is possible, it is not 
useful for CAN bus because in this mode 
there is no way to distinguish whether the data 
comes from a single packet or even from the 
same device on the bus.

Figure 1: For the classic eye diagram, the 
oscilloscope is triggered on any edge while 
running in persistence mode.  For CAN 
bus, this kind of eye diagram will contain 
bits from different data packages and 
different nodes.

A better way to form the eye diagram is to 
acquire a record containing a complete data 
packet and to overlay all bits from this one 
data packet to form the eye diagram. This 
can be done with the use of a special „slicer“ 
software function in the oscilloscope, which 
breaks down the waveforms into slices. 
These “slices” are overlaid on top of each 
another to generate the eye diagram of the 
data packet. To cut the slices into the correct 
length and adjust them on top of each other, 
a “virtual” clock must be used. In the case 
of CAN, this clock needs to be extracted 
from the waveform itself because it is not 
available as a separate signal. 

 
Figure 2: For a “sliced” eye diagram, all 
bits from a data packet are overlaid using a 
virtual clock. In the top graph, the red bars 
show the separation of the bits extracted by 
the virtual clock. 

This method works quite well for classic 
CAN where we have a constant bit rate in 
a frame, but what happens if we use this 
method for CAN-FD or CAN-XL where the 
bit rate changes?
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To get a usable eye diagram for CAN-FD 
and CAN-XL, where we have different parts 
in the packet using different clock speeds, 
we need to refine the generation of the eye 
diagram by splitting the CAN message into 
the two parts of the packet, the arbitration 
phase and the data phase. The easiest way, 
and this is also the way most oscilloscope 
vendors have implemented the eye diagram 
for CAN signals, is to create the eye only 
from the data part of the CAN message.

A much better way is to generate separate 
eyes for both the arbitration phase and data 
phase of each frame. To be able to separate 
the phases and overlay the correct bits for 
the different eye diagrams, the oscilloscope 
must decode and interpret the CAN frame 
first. For example, in the figure below, only 
the bits highlighted in blue are relevant to 
the arbitration phase eye diagram. In the 
picture it is hard to see, but to get a correct 
eye diagram containing all parts of the 
arbitration phase, we have to overlay bits 
that occur both before and after the data 
phase. Similarly, the second eye diagram 
for the data phase uses only the part of 
the packet that is highlighted in green in  
Figure 3.

Figure 3: To get a useful eye diagram for 
a CAN bus network, we have to generate 
two kinds of eye diagrams, one for the 
arbitration phase (blue) and a second one 
for the data phase (green).

Both eye diagrams also need a different 
virtual clock because we have different data 
rates in both phases. The eye diagrams do 
not include the acknowledge bit, since it 
does not belong to the data packet and other 
nodes send it. For generating a CAN-XL eye 
diagram, we have to extend this method 

further. In CAN-XL there is a third class 
of bits, the ADS and DAS bit sequences, 
which are needed by the protocol to give 
the receiver additional time to synchronize 
to the higher bit rate before returning to the 
arbitration phase. Because a real receiver 
does not care about the signal shape during 
this “transition” time, these bits have to be 
ignored when generating the eye diagrams, 
because including them would most likely 
give a false Fail indicator when doing mask 
testing.

How to calculate the virtual clock for the 
eye diagram?

To get a better understanding of what is 
needed for the virtual clock, we need to look 
at how synchronization works in CAN. The 
bit time is divided into four segments: the 
synchronization segment, the propagation 
time segment, the phase buffer Segment 
1, and the phase buffer segment 2. 
Each segment consists of a specific, 
programmable number of time quanta. The 
length of the time quantum (tq), which is the 
basic time unit of the bit time, is defined by 
the CAN controller’s system clock and the 
Baud Rate Prescaler. More information than 
could be discussed in this article can be 
found in the CAN specification.

Figure 4: The bit time is divided into four 
segments: the Synchronization Segment, 
the Propagation Time Segment, the Phase-
Segment 1, and the Phase-Segment 2, 
and each segment consists of a specific, 
programmable number of time quanta.

There are two types of synchronization in 
CAN: the hard synchronization and the 
resynchronization. Hard synchronization 
occurs at every Start-Of-Frame when a 
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recessive to dominant bit edge is detected 
after the intermission or idle period. 
Resynchronization occurs throughout the 
frame whenever a recessive to dominant 
bit edge is detected outside of the SyncSeg 
(Synchronization Segment). If an edge is 
too late, Phase-Segment 1 is lengthened to 
compensate and to adjust the time between the 
edge and the sampling point. If it is too early, 
Phase-Segment 2 is shortened to adjust the 
time between the edge and the sampling point. 
To simulate this behavior in the eye diagram 
on the oscilloscope, the resynchronization of 
the virtual clock is done also on a recessive-to-
dominant edge. In a real receiver, this setting 
can only be made with the resolution of a time 
quantum, which differs from how the setting is 
made with an oscilloscope, which can set the 
edge with a much higher resolution. We must 
take this difference in resolution into account if 
we want to overlay a mask on the oscilloscope 
eye diagram.

What does this mean for the virtual clock 
and the generation of the eye diagram in 
the oscilloscope? 

For the data phase, we have to adjust the 
timing for the eye diagram in a way similar 
to how it is done in a real receiver during 
resynchronization, meaning we have to 
resynchronize the software clock recovery 
on every recessive-to-dominant edge. 

Figure 5: Two eye diagrams should be 
generated for CAN signals. One for the 
arbitration phase (lower left) and one for 
the data phase (lower right). 

When looking at the lower right of Figure 
5, we can see an eye diagram of the data 
phase. In this phase, all bits are aligned like 
a real receiver that uses resynchronization 
on each recessive-to-dominant data edge.  
To overlay all data bits, we use the nominal  
bit rate for all edges between the resynchro-
nizations.

To align the eye diagram of the arbitration 
phase, which is shown on the lower left of 
Figure 5, it is necessary to overlay acquisitions 
in such a way that the transitions do not hit the 
mask. The solution to the problem of applying 
a mask is to use the first recessive-to-
dominant edge (the leading edge of the start-
of-frame) as the reference. According to the 
ISO definition, all other arbitration transitions 
must fall (occur) in front of the mask area, 
so that a violation of this is a real reception 
problem.

In many oscilloscopes (including the 
Teledyne LeCroy oscilloscopes), masks for 
CAN are available where, as is common in 
other standards, the mask is centered on 
the middle of the bit. In real CAN systems, 
this type of mask is not useful, as due to the 
expected ringing, the sampling point is not 
set in the middle of the bit length. For testing 
a real system, the mask needs to reflect this 
behavior. Figure 5 shows examples of masks 
that are better suited to the requirements of a 
real CAN network. The possibility of limiting 
an eye diagram to a participant or a specific 
message via a filter function enables a more  
in-depth analysis and simplifies trouble-
shooting.

What are eye diagrams useful for when 
analyzing the CAN bus?

As we know the sampling point, we can check 
if there is a stable condition at the time of the 
sampling point, and we can also quantify the 
timing of the ringing by simply measuring the 
ringing in the eye diagram. In Figure 6, we see 
a very typical reflection, but it is unclear where 
in the network this refection occurs. 

Figure 6: The timing of a reflection can be 
measured by using oscilloscope cursors 
to measure the time on the eye diagram 
between the first maxima and the first 
reflection maxima.
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To get information about the reflection point, 
we can measure the time between the first 
maxima and the first reflection maxima on 
the eye diagram. In Figure 6, the cursor 
measurement shows a delta of ~84 nsec. 
We can assume a typical runtime in a CAN 
network of 5 nsec/m, which corresponds 
to approximately 16.8 m. This is not the 
distance, because we have to take into 
account that the signal travels to the 
reflection point and that it will also travel 
back the same distance, so that we have to 
divide this value by 2. Based on the cursor 
measurement this reflection happens in a 
distance of 8.4 m.

However, we can also use this example 
to estimate up to which data rate we can 
accept this reflection, or up to which data 
rate the system will work without errors. 
Since the time for the reflections is fixed, we 
can measure on the eye diagram when the 
earliest sampling point may be in order to 
reliably detect the signal. The measurement 
for our example shows that the signal 
reflection is settled after 320 ns. From this 
data, we can determine the maximum data 
rate at which the sampling point occurs after 
the last reflection crosses the detection level. 
If we assume a sampling point at 70%, we 
can see that with 320 ns we are already very 
close to the maximum data rate, because 
the sampling point will be at 350 ns. For a 
system where we use a sampling point at 
85%, the 320 ns settling time would allow a 
theoretical bit rate of 2.66 Mbit/s.

Figure 7: The eye diagram can be used 
to measure the time until the reflection 
has leveled off below the CAN signal 
thresholds.

What other signal integrity parameters 
can we derive from the eye diagram?

Usually, the eye diagram is also used to 
evaluate noise and jitter in the system. To 
see how this can be applied to the CAN 
bus, first let’s have a look at the noise.  
Due to the reflections occurring in the 
system, we usually see an overlay of 
reflection and noise in the eye diagram, 
but this does not preclude analysis at the 
sampling point. In the eye diagram of a  
CAN bus signal, it is very possible to deter-
mine whether the levels at the sampling point  
are below or above the defined thresholds 
of 0.4 V for recessive and 0.9 V for dominant 
bit.

Figure 8: In the eye diagram, it looks as if 
the signal has different bit lengths, which 
we could consider as jitter.

But what about analyzing jitter in an 
eye diagram for a CAN bus system? In  
Figure 8, we see a CAN signal that has 
different bit lengths, which we normally 
would consider as jitter. But is that really  
the case? Here we need to take a  
closer look at the process of resyn-
chronization. Whenever a node performs a 
resynchronization and inserts or removes 
an additional time tick, the length of the bit 
is changing. In Figure 8, while this looks 
like jitter in the eye diagram, it is not. So, 
we have to be careful about trying to identify 
jitter using the eye diagram of CAN signals. 
There is another important point that we need  
to consider: since we have a resynchroni-
zation after 5 bits at the latest due to the 
insertion of the stuff bits, the analysis of 
the jitter in the eye diagram is not very 
meaningful.
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Conclusion

Eye diagrams are very useful for analyzing 
the signal integrity of a CAN network and 
provide very helpful information about 
reflections or violations of the levels at the 
sampling point. However, it is important to 
create the eye diagram based on the CAN 
definitions and to carry out a separate 
analysis for the arbitration and data phase.
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