
iCC 2024 CAN in Automation

47

What information can eye diagrams provide
for CAN?

Thomas Stüber (Teledyne LeCroy)

Eye diagrams are a popular method for quickly evaluating the signal integrity of serial
data systems. In this article, we would like to explain how to generate eye diagrams and
how they can be applied to CAN. Additionally, we will discuss how to generate separate
eye diagrams for the arbitration and data phase of CAN signals, and what valuable
information they provide. Finally, we will discuss how to use the information gained
from the eye diagrams to evaluate a CAN network.

What is an eye diagram and how it is
generated?

The eye diagram is a very simple method for
evaluating the signal quality of serial data. It is
a standard analysis tool for high-speed data
signals such as PCI Express®, SAS, SATA,
etc. It is much less commonly used for serial
buses such as CAN bus, but it provides a
simple way to characterize the signal quality.

Unlike high-speed bus systems, the CAN
bus transmits data in short bursts with blocks
of bits. Acquiring multiple waveforms and
“stacking” them on a persistence display is
how the traditional eye diagram is formed,
showing the history of all the acquisitions.
Although this method is possible, it is not
useful for CAN bus because in this mode
there is no way to distinguish whether the data
comes from a single packet or even from the
same device on the bus.

Figure 1: For the classic eye diagram, the
oscilloscope is triggered on any edge while
running in persistence mode. For CAN
bus, this kind of eye diagram will contain
bits from different data packages and
different nodes.

A better way to form the eye diagram is to
acquire a record containing a complete data
packet and to overlay all bits from this one
data packet to form the eye diagram. This
can be done with the use of a special „slicer“
software function in the oscilloscope, which
breaks down the waveforms into slices.
These “slices” are overlaid on top of each
another to generate the eye diagram of the
data packet. To cut the slices into the correct
length and adjust them on top of each other,
a “virtual” clock must be used. In the case
of CAN, this clock needs to be extracted
from the waveform itself because it is not
available as a separate signal.

Figure 2: For a “sliced” eye diagram, all
bits from a data packet are overlaid using a
virtual clock. In the top graph, the red bars
show the separation of the bits extracted by
the virtual clock.

This method works quite well for classic
CAN where we have a constant bit rate in
a frame, but what happens if we use this
method for CAN-FD or CAN-XL where the
bit rate changes?

iCC 2024 CAN in Automation

48

To get a usable eye diagram for CAN-FD
and CAN-XL, where we have different parts
in the packet using different clock speeds,
we need to refine the generation of the eye
diagram by splitting the CAN message into
the two parts of the packet, the arbitration
phase and the data phase. The easiest way,
and this is also the way most oscilloscope
vendors have implemented the eye diagram
for CAN signals, is to create the eye only
from the data part of the CAN message.

A much better way is to generate separate
eyes for both the arbitration phase and data
phase of each frame. To be able to separate
the phases and overlay the correct bits for
the different eye diagrams, the oscilloscope
must decode and interpret the CAN frame
first. For example, in the figure below, only
the bits highlighted in blue are relevant to
the arbitration phase eye diagram. In the
picture it is hard to see, but to get a correct
eye diagram containing all parts of the
arbitration phase, we have to overlay bits
that occur both before and after the data
phase. Similarly, the second eye diagram
for the data phase uses only the part of
the packet that is highlighted in green in
Figure 3.

Figure 3: To get a useful eye diagram for
a CAN bus network, we have to generate
two kinds of eye diagrams, one for the
arbitration phase (blue) and a second one
for the data phase (green).

Both eye diagrams also need a different
virtual clock because we have different data
rates in both phases. The eye diagrams do
not include the acknowledge bit, since it
does not belong to the data packet and other
nodes send it. For generating a CAN-XL eye
diagram, we have to extend this method

further. In CAN-XL there is a third class
of bits, the ADS and DAS bit sequences,
which are needed by the protocol to give
the receiver additional time to synchronize
to the higher bit rate before returning to the
arbitration phase. Because a real receiver
does not care about the signal shape during
this “transition” time, these bits have to be
ignored when generating the eye diagrams,
because including them would most likely
give a false Fail indicator when doing mask
testing.

How to calculate the virtual clock for the
eye diagram?

To get a better understanding of what is
needed for the virtual clock, we need to look
at how synchronization works in CAN. The
bit time is divided into four segments: the
synchronization segment, the propagation
time segment, the phase buffer Segment
1, and the phase buffer segment 2.
Each segment consists of a specific,
programmable number of time quanta. The
length of the time quantum (tq), which is the
basic time unit of the bit time, is defined by
the CAN controller’s system clock and the
Baud Rate Prescaler. More information than
could be discussed in this article can be
found in the CAN specification.

Figure 4: The bit time is divided into four
segments: the Synchronization Segment,
the Propagation Time Segment, the Phase-
Segment 1, and the Phase-Segment 2,
and each segment consists of a specific,
programmable number of time quanta.

There are two types of synchronization in
CAN: the hard synchronization and the
resynchronization. Hard synchronization
occurs at every Start-Of-Frame when a

iCC 2024 CAN in Automation

49

recessive to dominant bit edge is detected
after the intermission or idle period.
Resynchronization occurs throughout the
frame whenever a recessive to dominant
bit edge is detected outside of the SyncSeg
(Synchronization Segment). If an edge is
too late, Phase-Segment 1 is lengthened to
compensate and to adjust the time between the
edge and the sampling point. If it is too early,
Phase-Segment 2 is shortened to adjust the
time between the edge and the sampling point.
To simulate this behavior in the eye diagram
on the oscilloscope, the resynchronization of
the virtual clock is done also on a recessive-to-
dominant edge. In a real receiver, this setting
can only be made with the resolution of a time
quantum, which differs from how the setting is
made with an oscilloscope, which can set the
edge with a much higher resolution. We must
take this difference in resolution into account if
we want to overlay a mask on the oscilloscope
eye diagram.

What does this mean for the virtual clock
and the generation of the eye diagram in
the oscilloscope?

For the data phase, we have to adjust the
timing for the eye diagram in a way similar
to how it is done in a real receiver during
resynchronization, meaning we have to
resynchronize the software clock recovery
on every recessive-to-dominant edge.

Figure 5: Two eye diagrams should be
generated for CAN signals. One for the
arbitration phase (lower left) and one for
the data phase (lower right).

When looking at the lower right of Figure
5, we can see an eye diagram of the data
phase. In this phase, all bits are aligned like
a real receiver that uses resynchronization
on each recessive-to-dominant data edge.
To overlay all data bits, we use the nominal
bit rate for all edges between the resynchro-
nizations.

To align the eye diagram of the arbitration
phase, which is shown on the lower left of
Figure 5, it is necessary to overlay acquisitions
in such a way that the transitions do not hit the
mask. The solution to the problem of applying
a mask is to use the first recessive-to-
dominant edge (the leading edge of the start-
of-frame) as the reference. According to the
ISO definition, all other arbitration transitions
must fall (occur) in front of the mask area,
so that a violation of this is a real reception
problem.

In many oscilloscopes (including the
Teledyne LeCroy oscilloscopes), masks for
CAN are available where, as is common in
other standards, the mask is centered on
the middle of the bit. In real CAN systems,
this type of mask is not useful, as due to the
expected ringing, the sampling point is not
set in the middle of the bit length. For testing
a real system, the mask needs to reflect this
behavior. Figure 5 shows examples of masks
that are better suited to the requirements of a
real CAN network. The possibility of limiting
an eye diagram to a participant or a specific
message via a filter function enables a more
in-depth analysis and simplifies trouble-
shooting.

What are eye diagrams useful for when
analyzing the CAN bus?

As we know the sampling point, we can check
if there is a stable condition at the time of the
sampling point, and we can also quantify the
timing of the ringing by simply measuring the
ringing in the eye diagram. In Figure 6, we see
a very typical reflection, but it is unclear where
in the network this refection occurs.

Figure 6: The timing of a reflection can be
measured by using oscilloscope cursors
to measure the time on the eye diagram
between the first maxima and the first
reflection maxima.

iCC 2024 CAN in Automation

50

To get information about the reflection point,
we can measure the time between the first
maxima and the first reflection maxima on
the eye diagram. In Figure 6, the cursor
measurement shows a delta of ~84 nsec.
We can assume a typical runtime in a CAN
network of 5 nsec/m, which corresponds
to approximately 16.8 m. This is not the
distance, because we have to take into
account that the signal travels to the
reflection point and that it will also travel
back the same distance, so that we have to
divide this value by 2. Based on the cursor
measurement this reflection happens in a
distance of 8.4 m.

However, we can also use this example
to estimate up to which data rate we can
accept this reflection, or up to which data
rate the system will work without errors.
Since the time for the reflections is fixed, we
can measure on the eye diagram when the
earliest sampling point may be in order to
reliably detect the signal. The measurement
for our example shows that the signal
reflection is settled after 320 ns. From this
data, we can determine the maximum data
rate at which the sampling point occurs after
the last reflection crosses the detection level.
If we assume a sampling point at 70%, we
can see that with 320 ns we are already very
close to the maximum data rate, because
the sampling point will be at 350 ns. For a
system where we use a sampling point at
85%, the 320 ns settling time would allow a
theoretical bit rate of 2.66 Mbit/s.

Figure 7: The eye diagram can be used
to measure the time until the reflection
has leveled off below the CAN signal
thresholds.

What other signal integrity parameters
can we derive from the eye diagram?

Usually, the eye diagram is also used to
evaluate noise and jitter in the system. To
see how this can be applied to the CAN
bus, first let’s have a look at the noise.
Due to the reflections occurring in the
system, we usually see an overlay of
reflection and noise in the eye diagram,
but this does not preclude analysis at the
sampling point. In the eye diagram of a
CAN bus signal, it is very possible to deter-
mine whether the levels at the sampling point
are below or above the defined thresholds
of 0.4 V for recessive and 0.9 V for dominant
bit.

Figure 8: In the eye diagram, it looks as if
the signal has different bit lengths, which
we could consider as jitter.

But what about analyzing jitter in an
eye diagram for a CAN bus system? In
Figure 8, we see a CAN signal that has
different bit lengths, which we normally
would consider as jitter. But is that really
the case? Here we need to take a
closer look at the process of resyn-
chronization. Whenever a node performs a
resynchronization and inserts or removes
an additional time tick, the length of the bit
is changing. In Figure 8, while this looks
like jitter in the eye diagram, it is not. So,
we have to be careful about trying to identify
jitter using the eye diagram of CAN signals.
There is another important point that we need
to consider: since we have a resynchroni-
zation after 5 bits at the latest due to the
insertion of the stuff bits, the analysis of
the jitter in the eye diagram is not very
meaningful.

iCC 2024 CAN in Automation

51

Conclusion

Eye diagrams are very useful for analyzing
the signal integrity of a CAN network and
provide very helpful information about
reflections or violations of the levels at the
sampling point. However, it is important to
create the eye diagram based on the CAN
definitions and to carry out a separate
analysis for the arbitration and data phase.

Thomas Stüber
Teledyne LeCroy
Im Breitspiel 11c
DE-69126 Heidelberg
www.kvaser.se

