
iCC 2024 CAN in Automation

119

Relation of throughput and latency in CAN and
PLCA networks

Christoffer Mathiesen, (Kvaser)

The throughput of a simple point-to-point data link is dependent on two things: the link-
speed and the relation between payload and overhead. A multidrop network adds the
complication of having to factor in waiting for access to the shared medium. Classical
CAN, CAN-FD and CAN-XL comes with built-in multidrop support and a communication
protocol	 beneficial	 to	 this	 kind	 of	 structure.	 10BASE-T1S	 and	 10BASE-T1M	 using	
PLCA or D-PLCA aims to solve the access problem, but for a multidrop Ethernet bus.
As these protocols all try to solve a similar problem, comparisons between them can
assist a system designer decide which to use. But as they are implemented similarly yet
differently	it	can	be	difficult	to	discern	which	protocol	fit	better	than	another.	This	paper	
aims to describe a couple of scenarios and show why one protocol may be better suited
than another in those cases.

PLCA and D-PLCA behavior in short

10BASE-T1S can utilize the sub-protocol
PLCA to achieve bus behavior with real-time
characteristics. The yet unreleased version
10BASE-T1M, which is a further development
of 10BASE-T1S, can imple-ment both PLCA
and D-PLCA. With these sub-protocols
nodes get access to a trans-mission slot in a
round-robin fashion [1]. These slots are not
of fixed length in time, and if a node does
not have anything to transmit the next node
in the order can quickly get an opportunity
instead. If a node does have data to transmit
the next node in the order will have to wait
until the sending node has finished.

A PLCA network needs to be configured at
design-time. One node is configured as the
beacon, which all other nodes will sync to.
Since the network is known, nodes will not
have to back off from transmitting data. The
throughput will vary only by how much the
node will have to wait for other nodes to
do their transmissions. The PLCA protocol
allows a network to have 2-255 nodes, each
of which has an opportunity to send data
during each loop of the round-robin cycle
[1]. In practice, since 10BASE-T1S is not
designed for more than 8 nodes, having
more nodes than such may be difficult to
achieve. 10BASE-T1M is being designed to
handle 16 nodes.

D-PLCA aims to alleviate the need for the
network to be known at design-time by
making it possible to dynamically add and
remove nodes to the network. Because
of this dynamic nature, the need for the
designer to assign a node as the beacon is
not necessary as the nodes themselves can
mantle the role if required. To accommodate
new nodes to the network, there must always
exist an unused slot. The default for the
protocol is to always have 8 slots minimum,
whether used or not, and potentially grow
from there [2]. Because of the round-robin
style order and the possibility of adding nodes
to an active network, a node may collide with
another node during a transmission slot.
This requires the colliding nodes to back off
from transmission and reassign themselves
to another slot in the round-robin order and
try again later [2].

Scenario setup

To be able to make comparisons of the
protocols the setup of each needs to be
described. An overview can be seen in Table
1. For protocols that use variable bitrate,
two speeds are listed. A CAN network can
potentially be of any size, whereas PLCA
and D-PLCA are limited to a maximum of
255 (in practice up to 8 for 10BASE-T1S
and 16 for 10BASE-T1M). Because the
number of nodes in the network impacts

iCC 2024 CAN in Automation

120

the throughput of PLCA and D-PLCA, and
that the minimum slots in D-PLCA is 8, and
the last one of these slots is not to be in
use [2], the amount of network nodes for
each protocol is set to 7. For both PLCA
and D-PLCA it is assumed that burst mode
(multiple ethernet frames within the same
transmission slot) is disabled.

The CAN family of protocols use dynamic
stuff-bits to ensure transmission integrity,
but as these bits are dependent on the
pattern of the transmission, an assumption
of how often this happens must be made.
For this reason, a stuffing-factor of 8% is
chosen, as this corresponds to the likelihood
of a stuff bit given a completely random
sequence of bits. CANXL always put a stuff
bit every 10 bits in the data phase, and this
is represented by a second value in the stuff
factor column. 10BASE-T1S/T1M does not
use stuff bits, so PLCA and D-PLCA stuffing
factor is 0 %.

Each protocol may send different payload
sizes per packet. Because BASE10-T1S/
T1M is used to send Ethernet frames, the
minimum payload size for both PLCA and
D-PLCA is 46 bytes [1]. CANXL has a
minimum of 1 byte payload. For Classical
CAN (CANC) and CANFD, no extended
frames are used. For each of the protocols,
it is assumed that the other nodes in the
network are using the same protocol.

While bus design is not discussed in this
paper, it is important to note that the CAN
protocols are able to use many different
link-speeds other than those used in the
scenarios which are to be described.
CANXL can potentially even achieve
speeds of 30 Mbit/s! This gives leniency
in the requirements of the bus’s design if
high link-speeds are not needed, but better
capabilities if they are. 10BASE-T1S/T1M
can only run at 10 Mbit/s, and the bus must
always be designed with this bitrate in mind.
Because it is possible to run at a faster
rate as well as the same as 10BASE-T1S/
T1M, CANXL gets two entries. 10 Mbit/s to
be able to have comparable numbers
to PLCA and D-PLCA, and 20 Mbit/s to
show the difference a faster link-speed
makes.

Table 1: Settings used for the different
protocols.

Protocol Speed
(kbit/s) Nodes Stuff factor Payload

(byte)
CANC 1000 7 8 % 0-8
CANFD 1000/8000 7 8 % 0-64
CANXL 1000/10000 7 8 % / 10% 1-2048
CANXL
(20 Mbit) 1000/20000 7 8 % / 10 % 1-2048

PLCA 10000 7 0 % 46-1500
D-PLCA 10000 7 0 % 46-1500

Scenario 1: Single bus user, no data

The simplest scenario is that a single node
continuously sends messages containing
minimum data while no other node ever
tries to send packets. Because this test only
considers the packets and not the data within
them throughput must be calculated on the
messages themselves. In this scenario, the
CAN protocols can repeatedly get access
to the bus and send the messages, leading
to effectively 100% bandwidth utilization.
Despite faster link-speed, CANXL’s latency
is worse than CANFD’s mainly because of
the increased overhead caused by new data
fields in the header and footer.

PLCA and D-PLCA suffers significant
overhead from the protocol when only one
node use the bus and the payloads are of
these small sizes. Because of the protocol
overhead in this scenario PLCA and D-PLCA
can only utilize slightly more than 70% of the
available bandwidth.

Table 2: Average values when only a single
node continuously sends the smallest
possible packets.

Protocol Payload
(byte)

Latency
(µs) Bus util. (%) Eq. Thru-

put (kbit/s)
CANC 0 51.0 100% 1000.0
CANFD 0 35.1 100% 1822.0
CANXL 1 49.5 100% 3454.6
CANXL
(20 Mbit) 1 42.8 100% 4000.0

PLCA 46 85.1 73.9% 7391.3
D-PLCA 46 88.4 71.2% 7115.4

Scenario 2: Single bus user, full data

Another simple scenario is that a single
bus node repeatedly sends a message
containing as much data as possible. In
these cases, the older CANC and CANFD
protocols suffer a lot in throughput from their
relatively large overhead in each packet.

iCC 2024 CAN in Automation

121

CANXL fares better and is on a comparable
level to both PLCA and D-PLCA. Despite
equal bit-speed to PLCA and D-PLCA,
CANXL falls behind in absolute throughput
due to the stuffing procedure and slow
link-speed in the CAN compatible phases.
Utilizing a higher link-speed with CANXL
compensates for these factors and
enables throughput not possible using
10BASE-T1S/T1M.

Table 3: Average values when only a
single node continuously sends the largest
possible packets.

Protocol Payload
(byte)

Latency
(µs)

Time Data
(%)

Eq. Data
Thruput
(kbit/s)

CANC 8 120 53.3% 533.3
CANFD 64 104.3 61.4% 4911.3
CANXL 2048 1850.8 88.5% 8852.4
CANXL
(20 Mbit) 2048 940.4 86.8% 17367.0

PLCA 1500 1248.3 96.1% 9613.1
D-PLCA 1500 1251.6 95.8% 9587.7

Scenario 3: Single bus user, common
data payloads

To compare the protocols directly against
each other they must be used in the same
manner. If a payload of 64 bytes is to be
sent all protocols except for CANC are able
to send it in a single message. The multiple
messages combined with a comparably slow
link-speed, CANC is almost a magnitude
slower than the rest. The large number of
packets needed also introduces greater risk
of increased and variable latency, as other
nodes may interlace their transmissions in
between the large payload.

Table 4: Results when a single node is
to deliver a payload of 64 byte without
interference from other nodes

Protocol Payload
(byte)

Tot.
Msgs Tot. time (µs)

Eq. Data
Thru-put
(kbit/s)

CANC 64 8 960.0 533.4
CANFD 64 1 104.3 4911.3
CANXL 64 1 104.9 4880.8
CANXL
(20 Mbit) 64 1 70.5 7267.6

PLCA 64 1 99.5 5145.7
D-PLCA 64 1 102.8 4980.5

If a large single payload needs to be
transmitted multiple packages are needed to
complete the transmission. In this example,
a file of 4kB is to be sent. (Table 5) CANFD’s
small maximum payload of 64 byte leads to
significant overhead, which is the reason
why it performs worse. The newer CANXL
is almost on par with PLCA and D-PLCA but
has noticeable lower throughput. Despite
having equal link-speed in the data phase
and one fewer message sent, CANXL’s
implementation of stuffing in the data phase
and slow speed CAN-compatible negotiation
phase are the culprits behind the almost
800 kbit/s lower equivalent data throughput
when the link-speed is the same as for
PLCA and D-PLCA. As seen in Scenario 2,
increasing the link-speed can compensate
for the induced overhead.

Table 5: Results when a single node is
to deliver a payload of 4096 byte without
interference from other nodes.

Protocol Payload
(byte)

Tot.
Msgs Tot. time (µs)

Eq. Data
Thruput
(kbit/s)

CANC 4096 512 61379 533.4
CANFD 4096 64 6695.5 4911.3
CANXL 4096 2 3700.7 8854.5
CANXL
(20 Mbit) 4096 2 17375.7 17375.7

PLCA 4096 3 3399.5 9639.1
D-PLCA 4096 1251.6 3406.1 9620.4

Figure 1 and 2 shows the same test done
for a couple of different payload sizes. For
small payloads, CANFD and CANXL have
higher throughput, but after 64 byte they lose
ground PLCA and D-PLCA. CANFD plateau
at slightly below 5 Mbit/s after 64 bytes, due
to the maximum payload of 64 bytes of data
per packet. CANXL sticks close to PLCA
and D-PLCA but is noticeably behind unless
a higher link-speed is used.

iCC 2024 CAN in Automation

122

Figure 1: Throughput values for different
amounts of bytes to transmit.

Figure 2: Throughput values for different
amounts of bytes to transmit, zoomed in to
first four values.

Scenario 4: Best- and worst-case
latency of a message

A bus system is usually used with a real-time
system, and as such the latency of packets
can be of great importance. The CAN-
protocols’, PLCA’s and D-PLCA’s different

implementations impact the latencies of
packets and thus the responsiveness of a
system.

As CAN can prioritize the bus-access via the
arbitration phase, in the best case, a node
can be guaranteed to get access to the bus
as soon as it is free. However, although very
unlikely, this has the potential to block out
access to the bus entirely if a node is never
able to win a slot in the arbitration phase.

In table 6 the different CAN protocols’
different latencies are listed in a scenario
where each node is to send a 64-byte packet.
“Best Data” is when the bus was not in use,
and transmission can start immediately.
“Just Missed” means that the node just
missed to participate in arbitration, and
thus must wait until the other node currently
using the bus has finished its transmission.
“Wait All Send” means that the node has to
wait for all other 6 nodes to send a 64-byte
message. Usually this scenario is unlikely to
occur in a well-designed CAN-system, but in
order to compare to how PLCA and D-PLCA
behaves this case is included.

PLCA and D-PLCA do not have any ability
to prioritize messages, and all nodes must
wait for its opportunity-slot for transmission.
If the number of nodes is large, and all
other nodes sends much data, this wait can
potentially be very long. This wait cannot be
infinite since each node only has so much
time to send data during its opportunity-slot.
Because D-PLCA is dynamic, this protocol
could potentially end up in a situation where
a node gets blocked from transmitting during
its slot and must wait for an additional loop
of the round-robin order, where it now has
the last slot in the order.

In table 6 PLCA’s and D-PLCA’s different
latencies are listed in a scenario where each
node is to send a 64-byte packet. “Best Data”
and “Best No Data” is when the message has
been committed to be sent just before the
node got its transmission opportunity, thus
not needing to wait for access to the bus.
“Just Missed” is when a node just yielded
its transmission opportunity and must wait
for the next opportunity. To be comparable
to the CAN protocols, during the wait, one

iCC 2024 CAN in Automation

123

other node also sends a 64-byte packet.
“Wait All Send” is when a node just yielded
its transmission opportunity and must wait
for the next (all 6 other nodes use their
opportunities to send a 64-byte message
this transmission cycle).

Table 6: Different latencies for transmission
of a packet given different scenarios.

Protocol
Best

No Data
(µs)

Best
Data (µs)

Just Missed
(µs)

Wait All
Send(µs)

*CANC 64 8 960.0 533.4
CANFD 64 1 104.3 4911.3
CANXL 64 1 104.9 4880.8
CANXL
(20 Mbit) 64 1 70.5 7267.6

**PLCA 64 1 99.5 5145.7
**D-PLCA 64 1 102.8 4980.5

* CANC use 8-byte data packets. Other
 protocols use 64-byte packets.
** No Data still has a 46-byte data payload

Discussion of the scenarios and
protocols

From the scenarios previously outlined one
can see that the protocols sometimes perform
similar, and sometimes very differently.
From the perspective of just sending small
packets of a few bytes, despite the lower
bitrate, the CANFD protocol beats all other
protocols. Beating PLCA and D-PLCA
is not too strange in these cases, given
that the smallest Ethernet frame contains
46 bytes of data and unused bytes in the
data field essentially becomes overhead.
When the packet sizes increase to match
this minimum, CANFD’s advantage quickly
dissipates.

For transmission of large quantities of data,
a link with higher throughput is always
preferable. CANC and CANFD performs
poorly in these cases because of their small
payload sizes and comparably low link-
speed. While CANXL, PLCA and D-PLCA
all share the same link-speed of 10 Mbit/s,
because of CANXL’s implementation of
forced stuffing every 10 bits during the data
phase, the actual throughput during this
phase is only 9/10ths of the link-speed.
Combined with the slow CAN-compatible

phases of the protocol, and the usable data
throughput of a CANXL link cannot in any
scenario exceed ~8.9 Mbit/s, compared to
PLCA and D-PLCA having a throughput of
~9.6 Mbit/s. It is important to note that if the
bus is well designed CANXL can run at link-
speeds higher than 10 Mbit/s. If a higher
link-speed is used CANXL can beat both
PLCA and D-PLCA in throughput.

When a bus is under heavy load the message
latency potentially goes up. To be able to
make comparisons between the protocols,
in Scenario 4’s “Wait All Send” values it was
assumed that the CAN protocols would be
delayed equally as often by other nodes
as in PLCA and D-PLCA. This comparison
puts the CAN-protocols at a disadvantage
since it ignores both the main benefit and
drawback of CAN. A node can send both
subsequently or be starved by the other
nodes given if it wins or lose the arbitration in
a standard CAN network. Because of this it
cannot have a known latency other than the
transmission latency. For important/critical
messages, however, a well-designed CAN
system could implement packets that are
guaranteed to be sent as soon as possible.
But in order to have comparable values in
the table the choice of ignoring these traits
was made.

Since PLCA runs on a round-robin system,
and because burst-mode is disabled in
the above-described scenarios, one node
cannot send two packets without waiting
for the system to loop back around to allow
for transmission of the second packet. This
greatly increases the minimum latency.
But at the same time, because the system
implements round-robin, the latency of any
given packet can be guaranteed within a
lower and upper bound. Unlike CAN, there is
no way to implement a certain packet that’s
guaranteed to be sent as soon as possible
nor is it possible to starve out a node from
ever accessing the bus.

The differences in real-time characteristics
between the protocols has implications on
the real-time design choices of a system
implementing either type of protocol, but
details of such implications is beyond the
scope of this paper.

iCC 2024 CAN in Automation

124

Conclusion

When it comes to latency, CAN buses
are usually more responsive than a
corresponding 10BASE-T1S/T1M system,
but not in all cases. If packet sizes are small
and with no to few collisions, CAN has very
low latency. If packet sizes increase this
advantage vanishes.

For any bus, if it is under heavy load
the latency of any one packet is likely to
increase. Since PLCA and D-PLCA lack
any possibility to prioritize packets, if one
is designing a system that needs to have
prioritized packets sent as soon as possible,
the CAN protocols are more beneficial as
the potential latency for PLCA and D-PLCA
can be very long. To be able to benefit from
shorter response times for important packets
care and thought must be made during the
system design process.

Given a bus with a link-speed of at most 10
Mbit/s PLCA and D-PLCA systems running
on 10BASE-T1S/T1M will always have a
higher system-wide throughput than what
any CAN system is capable of, though
CANXL comes close in performance. The
main cause for CANXLs performance falling
behind PLCA and D-PLCA is because
of the need to add stuff-bits. If the bus is
well designed and capable of link-speeds
of 20Mbit/s and beyond, CANXL can
compensate for this overhead and achieve
throughput not possible with 10BASE-T1S/
T1M.

If one is looking for a multi-drop bus protocol
for a system that will handle transmissions
of large payloads, both PLCA and D-PLCA
are good alternatives, with CANXL as a
close second given that the bus structure is
unable to achieve link-speeds greater than
10 Mbit/s. If higher link-speeds are possible
CANXL can be the best in throughput as
well. A system that will handle small packets
would benefit mostly from CANFD, with
CANXL as a close second.

Because CANXL is backward compatible
with both CANC and CANFD, a node that can
send CANXL packets is most likely capable
of sending CANC and CANFD packets as

well. To maximize both responsiveness and
throughput, a well-designed system would
utilize CANFD packets when transmitting
small packets, and CANXL packets when
transmitting large packets.

References

[1] IEEE Std 802.3™‐2022
[2] Dynamic PLCA Node ID Assignment,
 https://www.ieee802.org/3/da/public/110420/
 beruto_3da_01_110420.pdf

Christoffer Mathiesen
Kvaser
Aminogatan 25A
SE-43153 Mölndal
christoffer.mathiesen@kvaser.com
www.kvaser.com

