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Relation of throughput and latency in CAN and
PLCA networks

Christoffer Mathiesen, (Kvaser)

The throughput of a simple point-to-point data link is dependent on two things: the link-
speed and the relation between payload and overhead. A multidrop network adds the 
complication of having to factor in waiting for access to the shared medium. Classical 
CAN, CAN-FD and CAN-XL comes with built-in multidrop support and a communication 
protocol	 beneficial	 to	 this	 kind	 of	 structure.	 10BASE-T1S	 and	 10BASE-T1M	 using	
PLCA or D-PLCA aims to solve the access problem, but for a multidrop Ethernet bus. 
As these protocols all try to solve a similar problem, comparisons between them can 
assist a system designer decide which to use. But as they are implemented similarly yet 
differently	it	can	be	difficult	to	discern	which	protocol	fit	better	than	another.	This	paper	
aims to describe a couple of scenarios and show why one protocol may be better suited 
than another in those cases.

PLCA and D-PLCA behavior in short

10BASE-T1S can utilize the sub-protocol 
PLCA to achieve bus behavior with real-time 
characteristics. The yet unreleased version 
10BASE-T1M, which is a further development 
of 10BASE-T1S, can imple-ment both PLCA 
and D-PLCA. With these sub-protocols 
nodes get access to a trans-mission slot in a 
round-robin fashion [1]. These slots are not 
of fixed length in time, and if a node does 
not have anything to transmit the next node 
in the order can quickly get an opportunity 
instead. If a node does have data to transmit 
the next node in the order will have to wait 
until the sending node has finished. 

A PLCA network needs to be configured at 
design-time. One node is configured as the 
beacon, which all other nodes will sync to. 
Since the network is known, nodes will not 
have to back off from transmitting data. The 
throughput will vary only by how much the 
node will have to wait for other nodes to 
do their transmissions. The PLCA protocol 
allows a network to have 2-255 nodes, each 
of which has an opportunity to send data 
during each loop of the round-robin cycle 
[1]. In practice, since 10BASE-T1S is not 
designed for more than 8 nodes, having 
more nodes than such may be difficult to 
achieve. 10BASE-T1M is being designed to 
handle 16 nodes.

D-PLCA aims to alleviate the need for the 
network to be known at design-time by 
making it possible to dynamically add and 
remove nodes to the network. Because 
of this dynamic nature, the need for the 
designer to assign a node as the beacon is 
not necessary as the nodes themselves can 
mantle the role if required. To accommodate 
new nodes to the network, there must always 
exist an unused slot. The default for the 
protocol is to always have 8 slots minimum, 
whether used or not, and potentially grow 
from there [2]. Because of the round-robin 
style order and the possibility of adding nodes 
to an active network, a node may collide with 
another node during a transmission slot. 
This requires the colliding nodes to back off 
from transmission and reassign themselves 
to another slot in the round-robin order and 
try again later [2].

Scenario setup

To be able to make comparisons of the 
protocols the setup of each needs to be 
described. An overview can be seen in Table 
1. For protocols that use variable bitrate, 
two speeds are listed. A CAN network can 
potentially be of any size, whereas PLCA 
and D-PLCA are limited to a maximum of 
255 (in practice up to 8 for 10BASE-T1S 
and 16 for 10BASE-T1M). Because the 
number of nodes in the network impacts 
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the throughput of PLCA and D-PLCA, and 
that the minimum slots in D-PLCA is 8, and 
the last one of these slots is not to be in 
use [2], the amount of network nodes for 
each protocol is set to 7. For both PLCA 
and D-PLCA it is assumed that burst mode 
(multiple ethernet frames within the same 
transmission slot) is disabled.

The CAN family of protocols use dynamic 
stuff-bits to ensure transmission integrity, 
but as these bits are dependent on the 
pattern of the transmission, an assumption 
of how often this happens must be made. 
For this reason, a stuffing-factor of 8% is 
chosen, as this corresponds to the likelihood 
of a stuff bit given a completely random 
sequence of bits. CANXL always put a stuff 
bit every 10 bits in the data phase, and this 
is represented by a second value in the stuff 
factor column. 10BASE-T1S/T1M does not 
use stuff bits, so PLCA and D-PLCA stuffing 
factor is 0 %. 

Each protocol may send different payload 
sizes per packet. Because BASE10-T1S/
T1M is used to send Ethernet frames, the 
minimum payload size for both PLCA and 
D-PLCA is 46 bytes [1]. CANXL has a 
minimum of 1 byte payload. For Classical 
CAN (CANC) and CANFD, no extended 
frames are used. For each of the protocols, 
it is assumed that the other nodes in the 
network are using the same protocol.

While bus design is not discussed in this 
paper, it is important to note that the CAN 
protocols are able to use many different 
link-speeds other than those used in the 
scenarios which are to be described. 
CANXL can potentially even achieve 
speeds of 30 Mbit/s! This gives leniency 
in the requirements of the bus’s design if 
high link-speeds are not needed, but better 
capabilities if they are. 10BASE-T1S/T1M 
can only run at 10 Mbit/s, and the bus must 
always be designed with this bitrate in mind. 
Because it is possible to run at a faster 
rate as well as the same as 10BASE-T1S/
T1M, CANXL gets two entries. 10 Mbit/s to  
be able to have comparable numbers  
to PLCA and D-PLCA, and 20 Mbit/s to  
show the difference a faster link-speed 
makes.

Table 1: Settings used for the different 
protocols.

Protocol Speed 
(kbit/s) Nodes Stuff factor Payload 

(byte) 
CANC 1000 7 8 % 0-8
CANFD 1000/8000 7 8 % 0-64
CANXL 1000/10000 7 8 % / 10% 1-2048
CANXL 
(20 Mbit) 1000/20000 7 8 % / 10 % 1-2048

PLCA 10000 7 0 % 46-1500
D-PLCA 10000 7 0 % 46-1500

Scenario 1: Single bus user, no data

The simplest scenario is that a single node 
continuously sends messages containing 
minimum data while no other node ever 
tries to send packets. Because this test only 
considers the packets and not the data within 
them throughput must be calculated on the 
messages themselves. In this scenario, the 
CAN protocols can repeatedly get access 
to the bus and send the messages, leading 
to effectively 100% bandwidth utilization. 
Despite faster link-speed, CANXL’s latency 
is worse than CANFD’s mainly because of 
the increased overhead caused by new data 
fields in the header and footer.

PLCA and D-PLCA suffers significant 
overhead from the protocol when only one 
node use the bus and the payloads are of 
these small sizes. Because of the protocol 
overhead in this scenario PLCA and D-PLCA 
can only utilize slightly more than 70% of the 
available bandwidth. 

Table 2: Average values when only a single 
node continuously sends the smallest 
possible packets.

Protocol Payload
(byte)

Latency 
(µs) Bus util. (%) Eq. Thru- 

put (kbit/s)
CANC 0 51.0 100% 1000.0
CANFD 0 35.1 100% 1822.0
CANXL 1 49.5 100% 3454.6
CANXL 
(20 Mbit) 1 42.8 100% 4000.0

PLCA 46 85.1 73.9% 7391.3
D-PLCA 46 88.4 71.2% 7115.4

Scenario 2: Single bus user, full data

Another simple scenario is that a single 
bus node repeatedly sends a message 
containing as much data as possible. In 
these cases, the older CANC and CANFD 
protocols suffer a lot in throughput from their 
relatively large overhead in each packet. 
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CANXL fares better and is on a comparable 
level to both PLCA and D-PLCA. Despite 
equal bit-speed to PLCA and D-PLCA, 
CANXL falls behind in absolute throughput 
due to the stuffing procedure and slow 
link-speed in the CAN compatible phases. 
Utilizing a higher link-speed with CANXL 
compensates for these factors and  
enables throughput not possible using 
10BASE-T1S/T1M.

Table 3: Average values when only a 
single node continuously sends the largest 
possible packets.

Protocol Payload
(byte)

Latency 
(µs)

Time Data 
(%)

Eq. Data 
Thruput 
(kbit/s)

CANC 8 120 53.3% 533.3
CANFD 64 104.3 61.4% 4911.3
CANXL 2048 1850.8 88.5% 8852.4
CANXL 
(20 Mbit) 2048 940.4 86.8% 17367.0

PLCA 1500 1248.3 96.1% 9613.1
D-PLCA 1500 1251.6 95.8% 9587.7

Scenario 3: Single bus user, common 
data payloads

To compare the protocols directly against 
each other they must be used in the same 
manner. If a payload of 64 bytes is to be 
sent all protocols except for CANC are able 
to send it in a single message. The multiple 
messages combined with a comparably slow 
link-speed, CANC is almost a magnitude 
slower than the rest. The large number of 
packets needed also introduces greater risk 
of increased and variable latency, as other 
nodes may interlace their transmissions in 
between the large payload.

Table 4: Results when a single node is 
to deliver a payload of 64 byte without 
interference from other nodes

Protocol Payload 
(byte)

Tot. 
Msgs Tot. time (µs)

Eq. Data 
Thru-put 
(kbit/s)

CANC 64 8 960.0 533.4
CANFD 64 1 104.3 4911.3
CANXL 64 1 104.9 4880.8
CANXL 
(20 Mbit) 64 1 70.5 7267.6

PLCA 64 1 99.5 5145.7
D-PLCA 64 1 102.8 4980.5

If a large single payload needs to be 
transmitted multiple packages are needed to 
complete the transmission. In this example, 
a file of 4kB is to be sent. (Table 5) CANFD’s 
small maximum payload of 64 byte leads to 
significant overhead, which is the reason 
why it performs worse. The newer CANXL 
is almost on par with PLCA and D-PLCA but 
has noticeable lower throughput. Despite 
having equal link-speed in the data phase 
and one fewer message sent, CANXL’s 
implementation of stuffing in the data phase 
and slow speed CAN-compatible negotiation 
phase are the culprits behind the almost 
800 kbit/s lower equivalent data throughput 
when the link-speed is the same as for 
PLCA and D-PLCA. As seen in Scenario 2, 
increasing the link-speed can compensate 
for the induced overhead.

Table 5: Results when a single node is 
to deliver a payload of 4096 byte without 
interference from other nodes.

Protocol Payload 
(byte)

Tot. 
Msgs Tot. time (µs)

Eq. Data 
Thruput 
(kbit/s)

CANC 4096 512 61379 533.4
CANFD 4096 64 6695.5 4911.3
CANXL 4096 2 3700.7 8854.5
CANXL 
(20 Mbit) 4096 2 17375.7 17375.7

PLCA 4096 3 3399.5 9639.1
D-PLCA 4096 1251.6 3406.1 9620.4

Figure 1 and 2 shows the same test done 
for a couple of different payload sizes. For 
small payloads, CANFD and CANXL have 
higher throughput, but after 64 byte they lose 
ground PLCA and D-PLCA. CANFD plateau 
at slightly below 5 Mbit/s after 64 bytes, due 
to the maximum payload of 64 bytes of data 
per packet. CANXL sticks close to PLCA 
and D-PLCA but is noticeably behind unless 
a higher link-speed is used.
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Figure 1: Throughput values for different 
amounts of bytes to transmit.

Figure 2: Throughput values for different 
amounts of bytes to transmit, zoomed in to 
first four values.

Scenario 4: Best- and worst-case 
latency of a message

A bus system is usually used with a real-time 
system, and as such the latency of packets 
can be of great importance. The CAN-
protocols’, PLCA’s and D-PLCA’s different 

implementations impact the latencies of 
packets and thus the responsiveness of a 
system.

As CAN can prioritize the bus-access via the 
arbitration phase, in the best case, a node 
can be guaranteed to get access to the bus 
as soon as it is free. However, although very 
unlikely, this has the potential to block out 
access to the bus entirely if a node is never 
able to win a slot in the arbitration phase. 

In table 6 the different CAN protocols’ 
different latencies are listed in a scenario 
where each node is to send a 64-byte packet. 
“Best Data” is when the bus was not in use, 
and transmission can start immediately. 
“Just Missed” means that the node just 
missed to participate in arbitration, and 
thus must wait until the other node currently 
using the bus has finished its transmission. 
“Wait All Send” means that the node has to 
wait for all other 6 nodes to send a 64-byte 
message. Usually this scenario is unlikely to 
occur in a well-designed CAN-system, but in 
order to compare to how PLCA and D-PLCA 
behaves this case is included.

PLCA and D-PLCA do not have any ability 
to prioritize messages, and all nodes must 
wait for its opportunity-slot for transmission. 
If the number of nodes is large, and all 
other nodes sends much data, this wait can 
potentially be very long. This wait cannot be 
infinite since each node only has so much 
time to send data during its opportunity-slot. 
Because D-PLCA is dynamic, this protocol 
could potentially end up in a situation where 
a node gets blocked from transmitting during 
its slot and must wait for an additional loop 
of the round-robin order, where it now has 
the last slot in the order.

In table 6 PLCA’s and D-PLCA’s different 
latencies are listed in a scenario where each 
node is to send a 64-byte packet. “Best Data” 
and “Best No Data” is when the message has 
been committed to be sent just before the 
node got its transmission opportunity, thus 
not needing to wait for access to the bus. 
“Just Missed” is when a node just yielded 
its transmission opportunity and must wait 
for the next opportunity. To be comparable 
to the CAN protocols, during the wait, one 
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other node also sends a 64-byte packet. 
“Wait All Send” is when a node just yielded 
its transmission opportunity and must wait 
for the next (all 6 other nodes use their 
opportunities to send a 64-byte message 
this transmission cycle).

Table 6: Different latencies for transmission 
of a packet given different scenarios. 

Protocol
Best 

No Data 
(µs)

Best 
Data (µs)

Just Missed
(µs)

Wait All 
Send(µs)

*CANC 64 8 960.0 533.4
CANFD 64 1 104.3 4911.3
CANXL 64 1 104.9 4880.8
CANXL 
(20 Mbit) 64 1 70.5 7267.6

**PLCA 64 1 99.5 5145.7
**D-PLCA 64 1 102.8 4980.5

* CANC use 8-byte data packets. Other  
 protocols use 64-byte packets.
** No Data still has a 46-byte data payload

Discussion of the scenarios and 
protocols

From the scenarios previously outlined one 
can see that the protocols sometimes perform 
similar, and sometimes very differently. 
From the perspective of just sending small 
packets of a few bytes, despite the lower 
bitrate, the CANFD protocol beats all other 
protocols. Beating PLCA and D-PLCA 
is not too strange in these cases, given 
that the smallest Ethernet frame contains 
46 bytes of data and unused bytes in the 
data field essentially becomes overhead. 
When the packet sizes increase to match 
this minimum, CANFD’s advantage quickly 
dissipates. 

For transmission of large quantities of data, 
a link with higher throughput is always 
preferable. CANC and CANFD performs 
poorly in these cases because of their small 
payload sizes and comparably low link-
speed. While CANXL, PLCA and D-PLCA 
all share the same link-speed of 10 Mbit/s, 
because of CANXL’s implementation of 
forced stuffing every 10 bits during the data 
phase, the actual throughput during this 
phase is only 9/10ths of the link-speed. 
Combined with the slow CAN-compatible 

phases of the protocol, and the usable data 
throughput of a CANXL link cannot in any 
scenario exceed ~8.9 Mbit/s, compared to 
PLCA and D-PLCA having a throughput of 
~9.6 Mbit/s. It is important to note that if the 
bus is well designed CANXL can run at link-
speeds higher than 10 Mbit/s. If a higher 
link-speed is used CANXL can beat both 
PLCA and D-PLCA in throughput.

When a bus is under heavy load the message 
latency potentially goes up. To be able to 
make comparisons between the protocols, 
in Scenario 4’s “Wait All Send” values it was 
assumed that the CAN protocols would be 
delayed equally as often by other nodes 
as in PLCA and D-PLCA. This comparison 
puts the CAN-protocols at a disadvantage 
since it ignores both the main benefit and 
drawback of CAN. A node can send both 
subsequently or be starved by the other 
nodes given if it wins or lose the arbitration in 
a standard CAN network. Because of this it 
cannot have a known latency other than the 
transmission latency. For important/critical 
messages, however, a well-designed CAN 
system could implement packets that are 
guaranteed to be sent as soon as possible. 
But in order to have comparable values in 
the table the choice of ignoring these traits 
was made.

Since PLCA runs on a round-robin system, 
and because burst-mode is disabled in 
the above-described scenarios, one node 
cannot send two packets without waiting 
for the system to loop back around to allow 
for transmission of the second packet. This 
greatly increases the minimum latency. 
But at the same time, because the system 
implements round-robin, the latency of any 
given packet can be guaranteed within a 
lower and upper bound. Unlike CAN, there is 
no way to implement a certain packet that’s 
guaranteed to be sent as soon as possible 
nor is it possible to starve out a node from 
ever accessing the bus.

The differences in real-time characteristics 
between the protocols has implications on 
the real-time design choices of a system 
implementing either type of protocol, but 
details of such implications is beyond the 
scope of this paper. 
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Conclusion

When it comes to latency, CAN buses 
are usually more responsive than a 
corresponding 10BASE-T1S/T1M system, 
but not in all cases. If packet sizes are small 
and with no to few collisions, CAN has very 
low latency. If packet sizes increase this 
advantage vanishes. 

For any bus, if it is under heavy load 
the latency of any one packet is likely to 
increase. Since PLCA and D-PLCA lack 
any possibility to prioritize packets, if one 
is designing a system that needs to have 
prioritized packets sent as soon as possible, 
the CAN protocols are more beneficial as 
the potential latency for PLCA and D-PLCA 
can be very long. To be able to benefit from 
shorter response times for important packets 
care and thought must be made during the 
system design process.

Given a bus with a link-speed of at most 10 
Mbit/s PLCA and D-PLCA systems running 
on 10BASE-T1S/T1M will always have a 
higher system-wide throughput than what 
any CAN system is capable of, though 
CANXL comes close in performance. The 
main cause for CANXLs performance falling 
behind PLCA and D-PLCA is because 
of the need to add stuff-bits. If the bus is 
well designed and capable of link-speeds 
of 20Mbit/s and beyond, CANXL can 
compensate for this overhead and achieve 
throughput not possible with 10BASE-T1S/
T1M.

If one is looking for a multi-drop bus protocol 
for a system that will handle transmissions 
of large payloads, both PLCA and D-PLCA 
are good alternatives, with CANXL as a 
close second given that the bus structure is 
unable to achieve link-speeds greater than 
10 Mbit/s. If higher link-speeds are possible 
CANXL can be the best in throughput as 
well. A system that will handle small packets 
would benefit mostly from CANFD, with 
CANXL as a close second. 

Because CANXL is backward compatible 
with both CANC and CANFD, a node that can 
send CANXL packets is most likely capable 
of sending CANC and CANFD packets as 

well. To maximize both responsiveness and 
throughput, a well-designed system would 
utilize CANFD packets when transmitting 
small packets, and CANXL packets when 
transmitting large packets.
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