
iCC 2024 CAN in Automation

105

Scheduling of CAN Message Transmission when
Multiple FIFOs with Assigned Priorities are Used in

RTOS Drivers

Michal Lenc, Pavel Píša
Czech Technical University in Prague, Faculty of Electrical Engineering

Department of Control Engineering

Typical RTOS general-purpose CAN bus subsystems offer interfaces that queue CAN messages
for transmission in FIFO order. This leads to bus arbitration priority inversion situations when
a critical message is sent after a low-priority one and a bus is fully loaded by another device.
This	is	usually	solved	by	adding	FIFOs	for	different	traffic	classes.	The	presented	solution	
allows	the	dynamic	redistribution	of	a	fixed	set	of	CAN	controller	 transmission	buffers	to	
these	classes.	The	CTU	CAN	FD	open-source	IP	core	has	been	chosen	as	the	first	supported	
device	because	it	allows	transmission	order	reassignment	of	these	buffers	on	the	fly.
The current work targets an open-source RTEMS executive because it needs a new full-
featured CAN/CAN FD stack. The executive is used in satellites and critical applications
and CAN bus popularity is rising in these areas. The project builds on the infrastructure
designed for LinCAN driver used in GNU/Linux real-time applications for decades, even
before SocketCAN.
When tested on CTU CAN FD and RTEMS, other RTEMS CAN drivers can be ported to the
framework. It can even be used for SocketCAN driver updates when Linux kernel network
interface multiple queues are used, as well as for NuttX drivers.

Real-Time Executive for Multiprocessor
Systems, commonly abbreviated as RTEMS,
is an open-source real-time executive de-
signed for embedded systems and offering
a standard POSIX interface. It is widely
used for space systems and other critical
applications; in the areas where CAN bus
usage is gaining momentum. However,
the executive does not yet have a general-
purpose CAN/CAN FD stack that would
provide a common application interface but
the developers have to implement target-
dependent solutions.

Our goal towards RTEMS was to introduce
a common CAN/CAN FD stack that would
provide a unified interface for chip drivers
and thus simplify both the porting of new
drivers and CAN bus usage from an
application perspective.

Bus Priority Inversion Problem Introduction

A common problem of general-purpose
CAN drivers utilizing software FIFO queues
is the bus arbitration priority inversion

problem. This problem occurs when the bus
is saturated by middle-priority messages
from one controller and a mix of low and
high-priority messages is pending on the
other controller. This problem is usually
solved by introducing priority classes and
messages being routed to different queues
based on their priority class assigned from
CAN message identifier ranges.

Mapping priority classes to a limited count
of the controller‘s hardware transmission
buffers however tends to be challenging.
This is caused by controllers usually
providing transmission of messages based
on their CAN identifiers or in the fixed order
determined by the TX buffer index.

Applications and sometimes even protocol
requirements expect the preservation of
message order written by the application,
even when different identifiers are used.
This requirement however disqualifies the
messages transmission order based on
CAN identifier. On the other hand, more
priority FIFO classes lead to the need to

iCC 2024 CAN in Automation

106

send messages in the order determined by
those classes. Usually, the driver limits the
transmission to one buffer per class or even
to one TX buffer at all and thus not using the
full potential of the controller.

Dynamic allocation of TX buffers to
multiple priority groups

The proposed design deals with the bus
arbitration priority inversion problem by
extending the common solution of FIFO
queues for each priority class. This solution
of multiple traffic classes is extended by
adding the dynamic redistribution of CAN
transmission buffers to these classes.

The dynamic redistribution ensures the
hardware TX buffers are assigned the
correct priority based on the priority class
of the inserted message and that the order
determined by the user application for
given stream/FIFO is preserved. After the
message is released by the application to
the queue structure, it is inserted into the
proper priority class based on the identifier
match filter. The controller’s driver is notified
of the new TX message to be processed and
checks whether it has a space in hardware
buffers. This is a standard behavior for most
of the CAN controllers.

If no space available in hardware buffers,
the controller checks the priority of the
highest pending priority class. If a message
of lower priority class occupies the buffers,
it is replaced by the pending message and
scheduled for later processing. The buffer
with a newly inserted message has to be
inserted in the transmit sequence after all
messages of the same or higher priority
class but before all messages of a lower
priority class. This way the controller ensures
the messages of the higher priority class are
sent first and also the order of messages
within the same priority class defined by one
or more applications is preserved.

The sequence of buffers to be transmitted
is stored in the TX order array holding
the numbers of hardware buffers as they
should be processed. This can be either a
standard array or for a controller with up to
8 TX hardware buffers 32-bit large unsigned

integer can be used as 0x01234567 value,
representing transmit order with buffer 0
(having the priority 7) being sent first, fits
into 32 bits. Using operations on unsigned
integers means the resulting code for
message promotion or demotion just
consists of bitwise operations and shifts,
therefore entirely omitting if statements and
loops and resulting in speeding up the code
execution.

The priority classes are mapped to the TX
order array using the TX order tail array with
information about the tail for a given priority
class. The tail points one position beyond
the previous valid class slot. Only the tail is
needed as the head for the highest priority
is fixed and heads for lower priorities are
at the exactly same position as previous
priority tals. This tail is used for the insertion
of new frames if the array is not full or for
reorganization when inserting new frames
into the array.

Figure 1: Visualization of dynamic
allocation of TX buffers

The relationship between hardware buffers
and SW queues and the usage of TX order
array mapping is visualized in Figure 1.
Only four hardware buffers and three priority
classes are used for the simplification. The
sequence of messages from the application
is the following; low priority message inserted
to buffer 0, high priority message inserted to
buffer 3, next low priority message inserted

iCC 2024 CAN in Automation

107

to buffer 2, and next high priority message
inserted to buffer 1. Without rotation of buffer
priorities, this would mean the controller
would try to send a low-priority message
first and in a better case delay a high-priority
message or in a worse case cause priority
inversion problem.

However the presented approach reorga-
nizes the hardware buffer priorities and as
a result buffers 3 and 1 are sent in prior to
buffers 0 and 2, ensuring the correct priority
and application-based order. TX order tail
array moved priority classes tails to position
2 for high and middle priority classes,
therefore new messages from those classes
would be inserted there and lower priority
classes would move left. Note that the tail
has to be moved also for all lower priority
classes, therefore middle priority class is
moved as well. Adding a new high-priority
or a middle-priority message would result
in low-priority from TX buffer 2 transmission
deactivation and being pushed to software
FIFO if not sent yet. Buffer two would then
be reused for a high-priority message.

RTEMS CAN/CAN FD stack

Our implementation of a common CAN/
CAN FD stack to RTEMS is based on an
infrastructure called LinCAN designed at
Czech Technical University by Pavel Píša
as a loadable module for Linux kernel and
its real-time variants [2]. It has been used
even in industrial applications for decades.
Each CAN controller is registered as a
character device into the /dev by name
(standard naming can0, can1, and so on is
used). The usage of the POSIX character
device interface allows the application to
use standard read/write/ioctl system calls for
CAN bus transmission and setup. Multiple
open of one device in blocking or non-
blocking mode from multiple applications or
threads is supported.

Figure 2: CAN FIFO implementation [2]

The stack infrastructure is based on
message FIFO queues, illustrated in Figure
2, with a configurable number of slots for
messages. These queues are organized into
oriented edges between chip drivers and
CAN users (applications that access FIFO
through an opened character device) and
are responsible for message transfers from
application to chip driver and vice versa.

Both controller and user applications
hold edge ends. These edges are divided
according to their direction and priority and
inserted to the correct list on its input and
output ends. The interconnection of one
CAN controller with two user applications
is illustrated in the Figure 3. The input
ends of edges/FIFOs are held in an inlist,
the inactive/empty out ends in an idle list
and active out ends are held in an active
list corresponding to the edge priority. The
controller and application then examine
the active list and determine if there are
any messages to process (either TX or RX
based on edge direction).

Figure 3: Message flow in graph edges [2].

Three FIFO queues for each application
that can route messages to the controller
are used in current implementation. Each
queue is assigned with its priority from 0 to
2 where 2 is the highest. The controller’s
driver takes frames from FIFOs according
to their priority class and transmits them to
the network. When the frame is successfully
sent, it is echoed to all queues back to open
file instances except the sending one (this

iCC 2024 CAN in Automation

108

option is configurable). Received frames are
filtered to all queues to applications ends of
the queues, which filter matches the CAN
identifier and frame type.

The FIFO queues are designed to support
the need to provide services optimal to CAN
frame delivery. On the controller side, multiple
slots, each with one CAN frame, can be taken
from FIFO and kept until the transmission
is finished. Then, the frame from the slot is
distributed to inform clients that the frame was
sent. The framework has a unique feature to
allow pushback slots (frames) when some
later scheduled low-priority frame occupies
the hardware TX buffer, which is urgently
demanded for a higher priority pending
message from other FIFO. The frame is
pushed back to the originating FIFO head
and scheduled for later TX processing. This
functionality is necessary for the dynamical
allocation mechanism described in the
previous chapter.

The ends of the edges are disconnected
during close operation. For outgoing edges,
the driver waits for the messages to be sent
and therefore ensures that no message
already written by the user is lost. Close
function by default waits for this operation
in blocking mode. It is possible to use the
ioctl call to set non-blocking return from
close as edges are still kept allocated until
the messages are sent. User can use other
ioctl call to check whether there are still some
pending messages.

Opening or closing a file descriptor does not
necessarily have to start or stop the chip
itself. Instead, this operation is handled by
the ioctl call from the application. This way
the user can control the chip usage. There

Figure 4: CTU CAN FD IP core structure [5]

is a possibility to handle chip start from the
board support package level as well.

The can_frame structure represents one
CAN message (called a frame in the RTEMS
driver). This structure has a statically defined
header represented by a can_frame_
header structure. The header has 8 bytes
timestamp, 4 bytes CAN ID, 2 bytes flags,
and 2 bytes data length. Data are statically
allocated to a 64-byte long array with byte
access.

struct can_frame_header {
 uint64_t timestamp;
 uint32_t can_id;
 uint16_t flags;
 uint16_t len;
};
struct can_frame {
 struct can_frame_header header;
 uint8_t data[CAN_FRAME_MAX_DLEN];
};

CTU CAN FD

The development of open source CAN
core originated at the Department of
Measurement of FEE at CTU under the lead
of Jiří Novák. The core developed by Ondrej
Ille and called CTU CAN FD is a softcore
written in VHDL [4] The design does not
require any vendor-specific libraries and is
compliant with ISO 11898-1:2015 standard.

CTU CAN FD core can have up to 8
independent buffers for TX messages and
each buffer has its own state and three
bit priority number. These priorities can be
used for FIFO behavior simulation in case
only one FIFO queue is supported for TX
messages as in SocketCAN for example.

iCC 2024 CAN in Automation

109

Each buffer is then assigned with different
priority and those priorities are rotated after
the transmission is completed [4].

This core was chosen for the first
demonstration as it supports the abort of
currently queued TX buffer and the buffer
priority updates on the fly which changes
the requested buffer transmission order.

Dynamic allocation demonstration with
RTEMS and CTU CAN FD

Figure 5: High-priority message latency profile

The ability of dynamic allocation of TX
buffers to priority groups was demonstrated
on educational kit MicroZed APO based on
MicroZed evaluation kit with Xilinx Zynq-7000
system on chip. The programmable logic part
was configured with four independent CTU
CAN FD IP cores/CAN FD controllers, each
one with four TX buffers. The application ran
on RTEMS executive and used the newly
introduced common CAN/CAN FD stack.

One controller was fully loading the CAN
bus with 8-byte long messages with 0x500
identifier (used as middle priority in this
test), while the other one was accessed
from two applications. One application was
attempting to send messages with a 0x700
identifier (low priority) and the other one
was sending 8-byte long messages with a
0x20 identifier (high priority). This way the

test simulated a fully loaded bus by one
controller and another controller trying to
access this bus.

The high-priority messages were sent
in the burst of size 4 and the application
subsequently waited long enough to send
those messages to the bus. The latency
profile in Figure 5 shows the write-to-receive
latency in microseconds for 10,000 sent
high-priority messages. RX side timestamps
are captured at Start of Frame bit. High-

priority messages would wait indefinitely for
low-priority ones to leave the FIFO if only
traditional driver with FIFOs would be used.
The black vertical lines represents the length
of one 8-byte long message transmission
(about 120 microseconds).

Conclusion

Based on the tests on real hardware, the
presented solution can be used to ensure
the correct transmit order of various priority
messages while using all the controller’s
hardware resources. This way the bus
arbitration priority inversion problem is
solved. The solution is also not only specific
for CTU CAN FD softcore, but can be ported
to other drivers and systems if the upper
layer stack supports more priority classes
and their rescheduling.

iCC 2024 CAN in Automation

110

From the RTEMS point of view, the presented
common stack can be a step towards the
unification of CAN controller usage as it
provides a common application interface
standardized with other operating systems
such as NuttX or GNU/Linux.

In the future, the dynamic rescheduling can
be implemented in other systems focused
on real-time performance, namely NuttX
OS.

Development version is available at [6] with
future plans on implementation to RTEMS
mainline. More comprehensive list of CTU
CAN related projects is available at [1].

References

[1] CAN bus CTU FEE Projects, available online at
 https://canbus.pages.fel.cvut.cz/
[2] Píša, P., Vacek, F.: Open Source Components
 for the CAN Bus, 5-th RTLWS, 2003
[3] Píša, P.; Linux/RT-Linux CAN Driver (LinCAN),
 2005, available online at https://cmp.felk.cvut.
 cz/~pisa/can/doc/lincandoc-0.3.pdf
[4] Jeřábek, M.; CTU CAN FD Driver, The Linux
 Kernel documentation, available online at
 https://docs.kernel.org/networking/device_
 drivers/can/ctu/ctucanfd-driver.html
[5] Ille, O.; Novák, J.; Píša, P.; Vasilevski, M.:
 CAN FD open-source IP core, In: CAN
 Newsletter 3/2022, CAN in Automation, 2022
[6] CTU FEE GitLab, available at https://gitlab.fel.
 cvut.cz/otrees/rtems/rtems-canfd

Michal Lenc
Czech Technical University in Prague Faculty
of Electrical Engineering Department of
Control Engineering – K13135
Karlovo náměstí 13
CZ-120 00 Prague 2
lencmich@fel.cvut.cz

Pavel Píša
Czech Technical University in Prague Faculty
of Electrical Engineering Department of
Control Engineering – K13135
Karlovo náměstí 13
CZ-120 00, Prague 2
pisa@fel.cvut.cz

This work was supported in part by the
Technology Agency of the Czech Republic,
program National Competence Centres under
Grant TN02000054 BOVENAC.

