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Typical RTOS general-purpose CAN bus subsystems offer interfaces that queue CAN messages 
for transmission in FIFO order. This leads to bus arbitration priority inversion situations when 
a critical message is sent after a low-priority one and a bus is fully loaded by another device. 
This	is	usually	solved	by	adding	FIFOs	for	different	traffic	classes.	The	presented	solution	
allows	the	dynamic	redistribution	of	a	fixed	set	of	CAN	controller	 transmission	buffers	to	
these	classes.	The	CTU	CAN	FD	open-source	IP	core	has	been	chosen	as	the	first	supported	
device	because	it	allows	transmission	order	reassignment	of	these	buffers	on	the	fly.
The current work targets an open-source RTEMS executive because it needs a new full-
featured CAN/CAN FD stack. The executive is used in satellites and critical applications 
and CAN bus popularity is rising in these areas. The project builds on the infrastructure 
designed for LinCAN driver used in GNU/Linux real-time applications for decades, even 
before SocketCAN.
When tested on CTU CAN FD and RTEMS, other RTEMS CAN drivers can be ported to the 
framework. It can even be used for SocketCAN driver updates when Linux kernel network 
interface multiple queues are used, as well as for NuttX drivers.

Real-Time Executive for Multiprocessor 
Systems, commonly abbreviated as RTEMS,  
is an open-source real-time executive de-
signed for embedded systems and offering 
a standard POSIX interface. It is widely 
used for space systems and other critical 
applications; in the areas where CAN bus 
usage is gaining momentum. However, 
the executive does not yet have a general-
purpose CAN/CAN FD stack that would 
provide a common application interface but 
the developers have to implement target-
dependent solutions.

Our goal towards RTEMS was to introduce 
a common CAN/CAN FD stack that would 
provide a unified interface for chip drivers 
and thus simplify both the porting of new 
drivers and CAN bus usage from an 
application perspective.

Bus Priority Inversion Problem Introduction

A common problem of general-purpose 
CAN drivers utilizing software FIFO queues 
is the bus arbitration priority inversion 

problem. This problem occurs when the bus 
is saturated by middle-priority messages 
from one controller and a mix of low and 
high-priority messages is pending on the 
other controller. This problem is usually 
solved by introducing priority classes and 
messages being routed to different queues 
based on their priority class assigned from 
CAN message identifier ranges.

Mapping priority classes to a limited count 
of the controller‘s hardware transmission 
buffers however tends to be challenging. 
This is caused by controllers usually 
providing transmission of messages based 
on their CAN identifiers or in the fixed order 
determined by the TX buffer index.

Applications and sometimes even protocol 
requirements expect the preservation of 
message order written by the application, 
even when different identifiers are used. 
This requirement however disqualifies the 
messages transmission order based on 
CAN identifier. On the other hand, more 
priority FIFO classes lead to the need to 
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send messages in the order determined by 
those classes. Usually, the driver limits the 
transmission to one buffer per class or even  
to one TX buffer at all and thus not using the 
full potential of the controller.

Dynamic allocation of TX buffers to 
multiple priority groups

The proposed design deals with the bus 
arbitration priority inversion problem by 
extending the common solution of FIFO 
queues for each priority class. This solution 
of multiple traffic classes is extended by 
adding the dynamic redistribution of CAN 
transmission buffers to these classes.

The dynamic redistribution ensures the 
hardware TX buffers are assigned the 
correct priority based on the priority class 
of the inserted message and that the order 
determined by the user application for 
given stream/FIFO is preserved. After the 
message is released by the application to 
the queue structure, it is inserted into the 
proper priority class based on the identifier 
match filter. The controller’s driver is notified 
of the new TX message to be processed and 
checks whether it has a space in hardware 
buffers. This is a standard behavior for most 
of the CAN controllers.

If no space available in hardware buffers, 
the controller checks the priority of the 
highest pending priority class. If a message 
of lower priority class occupies the buffers, 
it is replaced by the pending message and 
scheduled for later processing. The buffer 
with a newly inserted message has to be 
inserted in the transmit sequence after all 
messages of the same or higher priority 
class but before all messages of a lower 
priority class. This way the controller ensures 
the messages of the higher priority class are 
sent first and also the order of messages 
within the same priority class defined by one 
or more applications is preserved. 

The sequence of buffers to be transmitted 
is stored in the TX order array holding 
the numbers of hardware buffers as they 
should be processed. This can be either a 
standard array or for a controller with up to 
8 TX hardware buffers 32-bit large unsigned 

integer can be used as 0x01234567 value, 
representing transmit order with buffer 0 
(having the priority 7) being sent first, fits 
into 32 bits. Using operations on unsigned 
integers means the resulting code for 
message promotion or demotion just 
consists of bitwise operations and shifts, 
therefore entirely omitting if statements and 
loops and resulting in speeding up the code 
execution.

The priority classes are mapped to the TX 
order array using the TX order tail array with 
information about the tail for a given priority 
class.  The tail points one position beyond 
the previous valid class slot. Only the tail is 
needed as the head for the highest priority 
is fixed and heads for lower priorities are 
at the exactly same position as previous 
priority tals. This tail is used for the insertion 
of new frames if the array is not full or for 
reorganization when inserting new frames 
into the array.

Figure 1: Visualization of dynamic 
allocation of TX buffers

The relationship between hardware buffers 
and SW queues and the usage of TX order 
array mapping is visualized in Figure 1. 
Only four hardware buffers and three priority 
classes are used for the simplification. The 
sequence of messages from the application 
is the following; low priority message inserted 
to buffer 0, high priority message inserted to 
buffer 3, next low priority message inserted 
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to buffer 2, and next high priority message 
inserted to buffer 1. Without rotation of buffer 
priorities, this would mean the controller 
would try to send a low-priority message 
first and in a better case delay a high-priority 
message or in a worse case cause priority 
inversion problem.

However the presented approach reorga-
nizes the hardware buffer priorities and as 
a result buffers 3 and 1 are sent in prior to 
buffers 0 and 2, ensuring the correct priority 
and application-based order. TX order tail 
array moved priority classes tails to position 
2 for high and middle priority classes, 
therefore new messages from those classes 
would be inserted there and lower priority 
classes would move left. Note that the tail 
has to be moved also for all lower priority 
classes, therefore middle priority class is 
moved as well. Adding a new high-priority 
or a middle-priority message would result 
in low-priority from TX buffer 2 transmission 
deactivation and being pushed to software 
FIFO if  not sent yet. Buffer two would then 
be reused for a high-priority message.

RTEMS CAN/CAN FD stack

Our implementation of a common CAN/
CAN FD stack to RTEMS is based on an 
infrastructure called LinCAN designed at 
Czech Technical University by Pavel Píša 
as a loadable module for Linux kernel and 
its real-time variants [2]. It has been used 
even in industrial applications for decades.
Each CAN controller is registered as a 
character device into the /dev by name 
(standard naming can0, can1, and so on is 
used). The usage of the POSIX character 
device interface allows the application to 
use standard read/write/ioctl system calls for 
CAN bus transmission and setup. Multiple 
open of one device in blocking or non-
blocking mode from multiple applications or 
threads is supported.

Figure 2: CAN FIFO implementation [2]

The stack infrastructure is based on 
message FIFO queues, illustrated in Figure 
2, with a configurable number of slots for 
messages. These queues are organized into 
oriented edges between chip drivers and 
CAN users (applications that access FIFO 
through an opened character device) and 
are responsible for message transfers from 
application to chip driver and vice versa.

Both controller and user applications 
hold edge ends. These edges are divided 
according to their direction and priority and 
inserted to the correct list on its input and 
output ends. The interconnection of one 
CAN controller with two user applications 
is illustrated in the Figure 3.  The input 
ends of edges/FIFOs are held in an inlist, 
the inactive/empty out ends in an idle list 
and active out ends are held in an active 
list corresponding to the edge priority. The 
controller and application then examine 
the active list and determine if there are 
any messages to process (either TX or RX 
based on edge direction).

Figure 3: Message flow in graph edges [2].

Three FIFO queues for each application 
that can route messages to the controller 
are used in current implementation. Each 
queue is assigned with its priority from 0 to 
2 where 2 is the highest. The  controller’s 
driver takes frames from FIFOs according 
to their priority class and  transmits them to 
the network. When the frame is successfully 
sent, it is  echoed to all queues back to open 
file instances except the sending one (this 
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option is configurable). Received frames are 
filtered to all  queues to applications ends of 
the queues, which filter matches the CAN  
identifier and frame type.

The FIFO queues are designed to support 
the need to provide services optimal to CAN 
frame delivery. On the controller side, multiple 
slots, each with one CAN frame, can be taken 
from FIFO and kept until the transmission 
is finished. Then, the frame from the slot is 
distributed to inform clients that the frame was 
sent. The framework has a unique feature to 
allow pushback slots (frames) when some 
later scheduled low-priority frame occupies 
the hardware TX buffer, which is urgently 
demanded for a higher priority pending 
message from other FIFO. The frame is 
pushed back to the originating FIFO head 
and scheduled for later TX processing. This 
functionality is necessary for the dynamical 
allocation mechanism described in the 
previous chapter.

The ends of the edges are disconnected 
during close operation. For outgoing edges, 
the driver waits for the messages to be sent 
and therefore ensures that no message 
already written by the user is lost. Close 
function by default waits for this operation 
in blocking mode. It is possible to use the 
ioctl call to set non-blocking return from 
close as edges are still kept allocated until 
the messages are sent. User can use other 
ioctl call to check whether there are still some 
pending messages.

Opening or closing a file descriptor does not 
necessarily have to start or stop the chip 
itself. Instead, this operation is handled by 
the ioctl call from the application. This way 
the user can control the chip usage. There 

Figure 4: CTU CAN FD IP core structure [5]

is a possibility to handle chip start from the 
board support package level as well.

The can_frame structure represents one 
CAN message (called a frame in the RTEMS 
driver). This structure has a statically defined 
header represented by a can_frame_
header structure. The header has 8 bytes 
timestamp, 4 bytes CAN ID, 2 bytes flags, 
and 2 bytes data length. Data are statically 
allocated to a 64-byte long array with byte 
access.

struct can_frame_header {
 uint64_t timestamp;
 uint32_t can_id;
 uint16_t flags;
 uint16_t len;
};
struct can_frame {
 struct can_frame_header header;
 uint8_t data[CAN_FRAME_MAX_DLEN];
};

CTU CAN FD

The development of open source CAN 
core originated  at the Department of 
Measurement of FEE at CTU under the lead 
of Jiří Novák. The core developed by Ondrej 
Ille and called CTU CAN FD is a softcore 
written in VHDL [4] The design does not 
require any vendor-specific libraries and is 
compliant with ISO 11898-1:2015 standard.

CTU CAN FD core can have up to 8 
independent buffers for TX messages and 
each buffer has its own state and  three 
bit priority number. These priorities can be 
used for FIFO behavior simulation in case 
only one FIFO queue is supported for TX 
messages as in SocketCAN for example. 
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Each buffer is then assigned with different 
priority and those priorities are rotated after 
the transmission is completed [4].

This core was chosen for the first 
demonstration as it supports the abort of 
currently queued TX buffer and the buffer 
priority updates on the fly which changes 
the requested buffer transmission order.

Dynamic allocation demonstration with 
RTEMS and CTU CAN FD

Figure 5: High-priority message latency profile

The ability of dynamic allocation of TX 
buffers  to priority groups was demonstrated  
on educational kit MicroZed APO based on 
MicroZed evaluation kit with Xilinx Zynq-7000 
system on chip. The programmable logic part 
was configured with four independent CTU 
CAN FD IP cores/CAN FD controllers, each 
one with four TX buffers. The application ran 
on RTEMS executive and used the newly 
introduced common CAN/CAN FD stack.

One controller was fully loading the CAN 
bus with 8-byte long messages with 0x500 
identifier (used as middle priority in this 
test), while the other one was accessed 
from two applications. One application was 
attempting to send messages with a 0x700 
identifier (low priority) and the other one 
was sending 8-byte long messages with a 
0x20 identifier (high priority). This way the 

test simulated a fully loaded bus by one 
controller and another controller trying to 
access this bus.

The high-priority messages were sent 
in the burst of size 4 and the application 
subsequently waited long enough to send 
those messages to the bus. The latency 
profile in Figure 5 shows the write-to-receive 
latency in microseconds for 10,000 sent 
high-priority messages. RX side timestamps 
are captured at Start of Frame bit. High-

priority messages would wait indefinitely for 
low-priority ones to leave the FIFO if only 
traditional driver with FIFOs would be used.
The black vertical lines represents the length 
of one 8-byte long message transmission 
(about 120 microseconds).

Conclusion

Based on the tests on real hardware, the 
presented solution can be used to ensure 
the correct transmit order of various priority 
messages while using all the controller’s 
hardware resources. This way the bus 
arbitration priority inversion problem is 
solved. The solution is also not only specific 
for CTU CAN FD softcore, but can be ported 
to other drivers and systems if the upper 
layer stack supports more priority classes 
and their rescheduling.
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From the RTEMS point of view, the presented 
common stack can be a step towards the 
unification of CAN controller usage as it 
provides a common application interface 
standardized with other operating systems 
such as NuttX or GNU/Linux.

In the future, the dynamic rescheduling can 
be implemented in other systems focused 
on real-time performance, namely NuttX 
OS.

Development version is available at [6] with 
future plans on implementation to RTEMS 
mainline. More comprehensive list of CTU 
CAN related projects is available at [1].
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