
iCC 2024 CAN in Automation

101

Linux CAN XL support and programming

Dr. Oliver Hartkopp (Volkswagen)

NMEA 2000 is a plug-and-play communications CAN-based standard used for connecting
marine sensors and display units within ships and boats. It sits amongst other NMEA
marine communications protocols from NMEA 0183 at the lower-end through to the
Ethernet-based NMEA ONENET standard. NMEA 2000 itself uses many of the features
that are in common with SAEJ1939 and ISO11783. The standard has enabled the easy
integration of electronic devices into a vessel.
However, as with all CAN-based protocols, several vulnerabilities to cyberattacks have
been	 identified.	Many	are	 at	 the	CAN	 level,	whilst	 others	 are	 in	 common	with	 those	
protocols from the SAEJ1939 family of protocols.
This	 paper	will	 discuss	 the	 known	 vulnerabilities	 that	 have	 been	 identified	with	 the	
NMEA 2000 protocol. These include weaknesses with the address claim and transport
protocols, and covert communication channels using methods based on steganography.
Activities with the aim of making NMEA 2000 robust to cyberattacks are described.

Twenty years ago the SocketCAN concept
was used to carry out CAN communication
in two vehicle demonstators. Since then
the Linux socket application programming
interface (API) and the application binary
interface (ABI) remains stable in a way
that a todays Linux kernel can still execute
those 20 year old binaries – given the same
processor architecture.

When the SocketCAN project was applied
to the Linux kernel 2.6.25 in January 2008
the API was „carved in stone“. Since then
an infrastructure e.g. to configure bitrate
settings for CAN network interfaces and
a number of additional network layer
functionalities (e.g. ISO15765-2, J1939)
was added. A huge extension of the APIs to
handle CAN related content and the CAN
interface configuration became necessary
when CAN FD was announced at the iCC
2012.

The evolution of CAN frame data
structures

The common CAN CC (Classical CAN)
data structure is used whenever CAN
frames need to be exchanged between the
application (user space) and the Linux OS
kernel (kernel space):
The struct can_frame has a fixed size of
16 byte and contains the 11/29 bit CAN

identifier, a data length information, some
flags (e.g. RTR) and a comparably new
len8_dlc element to be able to send and
receive CC DLC values from 9 .. 15 when
the data length is 8 byte.

With CAN FD the number of data bytes was
extended to 64 byte which increases the size
of the struct canfd_frame to 72 byte. A flags
element has been added to carry new CAN
FD specific bits like the Error State Indicator
(ESI) and the Bit Rate Setting (BRS) to be
able to switch to the second bit rate in the
data section on a per frame basis.

iCC 2024 CAN in Automation

102

When the Linux network socket has been
enabled to receive CAN FD frames with a
so-called setsockopt() system call, a reading
of CAN frames can pass either a CAN CC
frame or a CAN FD frame. Therefore the
data structure used to store the received
CAN frame has to be able to contain the
maximum frame size (72 byte). The number
of received bytes which is the return value of
the read() syscall will then be either 16 byte
(CAN CC) or 72 byte (CAN FD).

As the two data structures share the same
layout it is possible to store CAN CC frame
content into a struct canfd_frame:

When using the struct canfd_frame in this
kind of dual-use mode, the CANFD_FDF bit
can be used to identify the CAN frame type.
Since Linux v6.1 the CANFD_FDF bit is
automatically set in the flags element when
reading CAN FD frames from the CAN_
RAW socket.

With the introduction of CAN XL not only
the support for a third data bit rate has to
be implemented in the CAN network driver
infrastructure but the former concept of
copying the fixed maximum size of the CAN
XL frame data structure has to be questioned.
In the case of a CAN XL data length of less
than 2048 only the required number of data
bytes should be copied between the user
space and the Linux kernel space and vice
versa. When the setsockopt() to receive
CAN XL frames is enabled the read()
system call now might return length values
of 16 (CAN CC), 72 (CAN FD) or 13 .. 2060
byte for CAN XL, where the CAN XL header
content has a size of 12 byte followed by 1 ..
2048 byte of data.

As the possible length values from CAN XL
read() operations now cover the existing
length values of CAN CC and CAN FD

the CAN XL frame needs an alternative
indicator. Therefore the newly introduced
CANXL_XLF bit with the value 0x80 (dec
128) is always set in the canxl_frame.flags
element. As the canxl_frame.flags element
shares the position of the can_frame.len
and canfd_frame.len elements, the value of
the CANXL_XLF bit can be clearly identified
because the length information of CC/FD
frames can only have values up to 64.

When e.g. using a C-union which contains a
struct can_frame, a struct canfd_frame and
a struct canxl_frame the flow of checks after
the read() system call could look like this:

1. read bytes < 0 ➔ standard Linux read()
failure: error handling for read() failure

2. read bytes < 13 ➔ not even a CAN XL
header: error handling for read() failure

3. canxl_frame.flags & CANXL_XLF ==
CANXL_XLF ➔ CAN XL frame

4. read bytes == 72 ➔ CAN FD frame
5 read bytes == 16 ➔ CAN CC frame
6. error handling for read() failure

The 11 bit CAN XL priority filtering is
processed with the established 32 bit
mask/value filters of the CAN_RAW socket
analogue to the CAN identifier filtering for 11
bit CAN IDs of CAN CC/FD frames. The 8
bit CAN XL Virtual CAN Network Identifier
(VCID) is placed in the bits 16 .. 23 of the
CAN XL priority element. The bits 24 .. 31
have to be set to zero.

A VCID value of zero represents an „untagged“
CAN XL frame. Since Linux v6.9 the

iCC 2024 CAN in Automation

103

CAN_RAW socket supports the filtering and
the generation of VCID values via setsockopt()
interface to be able to read and write VCID
content. This dedicated VCID handling for
CAN XL frames can be cascaded with the
common 32 bit CAN_RAW receive filter.

Summarizing the evolution of the CAN frame
data structures and the socket options that
enable the CAN FD and CAN XL traffic, the
initial paradigm to access CAN content over
Linux network sockets could be maintained
over time. This helps application programmers
to get used to work with CAN XL based on
their existing knowledge about how to work
with CAN CC and CAN FD setups.

Virtual CAN interfaces

The virtual CAN interfaces in Linux provide
a local echo of CAN content, so that multi
user applications on the same host can
interact with each other via CAN. In addition
to the virtual CAN driver vcan, the vxcan can
establish local CAN traffic between different
network namespaces which is e.g. needed
for containerization (LXC/Docker/etc). These
two virtual CAN drivers have been upgraded
together with the initial network layer support
for CAN XL in Linux v.6.1 in December 2022.

The different supported CAN proto cols
(CC/FD/XL) for virtual CAN interfaces are
configured by the maximum transfer unit
(MTU) value of the virtual CAN device. Like on
real CAN interfaces it is possible to configure
the virtual CAN bus for CAN CC, CAN FD or
CAN XL – where CAN XL covers CAN FD/
CC content and CAN FD covers CAN CC
content. To limit the CAN XL data length on
a CAN XL bus segment e.g. to meet real-
time requirements it is possible to reduce the
CAN XL MTU which then enforces the
maximum CAN XL data length on that CAN
XL interface.

• MTU = 16 ➔ CAN CC interface, data
 length 0 .. 8
• MTU = 72 ➔ CAN FD interface, data
 length 0 .. 64 (default MTU since Linux
 v4.12)
• MTU = 76 .. 2060 ➔ CAN XL interface,
 data length 1 .. 2048

To create a virtual CAN XL interface vcanxl0
the ip tool from the iproute2 package is
needed:

• ip link add name vcanxl0 type vcan
• ip link set vcanxl0 mtu 2060
• ip link set vcanxl0 up

At this point vcanxl0 can be used as virtual
CAN interface for Linux CAN XL applications.

CAN XL hardware driver support

The current setup to develop and test
CAN XL hardware drivers for Linux is a
Terasic DE1-SoC FPGA with Ubuntu 20.04
equipped with a 3-channel CAN transceiver
board (XL/XL/FD) from NXP and a 3-channel
XCANB CAN XL controller FPGA IP core
from BOSCH.

Based on the XCANB API code example
from BOSCH three CAN XL network
devices have been implemented in a
recent Linux kernel with CAN XL support
(v6.1+). The setup is to be used at the CiA
CAN XL plugfest, to validate CiA CAN XL
segmentation and encapsulation protocols.
Based on this hardware setup the CAN
driver infrastructure will be extended to
support the new CAN XL bitrates and other
CAN XL specific settings.

Linux CAN XL applications

At time of writing the CAN XL VCID support
was integrated into the Linux kernel. Due to
this extension the official can-utils package
with candump and canplayer still do not
support CAN XL. Some tools to generate

iCC 2024 CAN in Automation

104

and display CAN XL frames on the command
line have been implemented by the author
to validate and test the CiA CAN XL protocol
PoC implementations (see below). During
the discussion about the VCID integration
the CAN XL support has been integrated
into the Wireshark project, that can now
correctly display CAN CC, CAN FD and
CAN XL content since Wireshark v4.2.3:

Various CAN CiA protocols have been
implemented to verify the ongoing
standardization efforts. The PoCs make
use of virtual CAN XL interfaces and need a
Linux kernel v6.1+ with CAN XL support. To
set up and execute the PoC implementations
follow the README file.

CAN CiA 611-1 (Service Data Unit Types)
• SDTs
 ◦ 0x03 : CAN CC / CAN FD
 ◦ 0x06 : CAN CC
 ◦ 0x07 : CAN FD
• URL: https://github.com/hartkopp/can-cia-
 611-1-poc

CAN CiA 611-2 (Multi-PDU)
• SDTs
 ◦ 0x08 : CiA 611-2 (Multi-PDU)
• URL: https://github.com/hartkopp/can-cia-
 611-2-poc

CAN CiA 613-3 (Fragmentation)
• URL: https://github.com/hartkopp/can-cia-
 613-3-poc

Dr. Oliver Hartkopp
Volkswagen
PO Box 1777
DE-38436 Wolfsburg
www.volkswagen.de

