
iCC 2024 CAN in Automation

111

CAN-based bootloaders: Advantages and Disadvan-
tages of CANopen bootloaders, J1939 DM bootloa-
ders, J1939 CAM11/CAM21 bootloaders, and UDS

bootloaders

Torsten Gedenk (emotas embedded communication)

NMEA 2000 is a plug-and-play communications CAN-based standard used for connecting
marine sensors and display units within ships and boats. It sits amongst other NMEA
marine communications protocols from NMEA 0183 at the lower-end through to the
Ethernet-based NMEA ONENET standard. NMEA 2000 itself uses many of the features
that are in common with SAEJ1939 and ISO11783. The standard has enabled the easy
integration of electronic devices into a vessel.
However, as with all CAN-based protocols, several vulnerabilities to cyberattacks have
been	 identified.	Many	are	 at	 the	CAN	 level,	whilst	 others	 are	 in	 common	with	 those	
protocols from the SAEJ1939 family of protocols.
This	 paper	will	 discuss	 the	 known	 vulnerabilities	 that	 have	 been	 identified	with	 the	
NMEA 2000 protocol. These include weaknesses with the address claim and transport
protocols, and covert communication channels using methods based on steganography.
Activities with the aim of making NMEA 2000 robust to cyberattacks are described.

I. Tasks of an embedded bootloader

A bootloader usually used in embedded
devices is a piece of firmware which is
usually located at the start of the program
area and thus which is started at a reset
of the of the ECU. The primary tasks of an
embedded bootloader are the following:

• start of application
• verification of application
• reception of new application in case of an

update
• authentication of update tool (if possible)

In order to achieve these tasks the bootloader
must be able to erase and write to the flash
memory of the ECU and there must be a
way to communicate with an update tool. In
a CAN network it requires the support of a
CAN-based higher layer protocol

II. Requirements for embedded
 bootloaders

Fast transmission: In order to reduce the
required time to update the firmware of an
ECU, the fast transmission of the data is
one of the most important requirement and

it is the one which is affected most by CAN
and the higher-layer protocols. Because
of this the data transfer for all different
protocols will be examined in a separate
section of the this paper.

Fast start of the application: The time the
bootloader needs to check if the application
is valid should be as short as possible in
order to achieve a fast boot-up of the ECU.
For small application it is common that the
bootloader calculates a checksum for the
application at each start, but this approach
takes a longer time with larger application.
Thus it is also common that the checksum
of the stored application is only calculated
once after the download and the specific
check of the application memory at each
start is skipped.

Checks of the application and download tool
The bootloader needs to perform a couple
of checks on the application and on the
download tool. It has to verify that the
downloaded firmware is suitable for the
ECU, that the data of the firmware has not
been modified during the transfer and that
the download tool is allowed to perform the
action.

iCC 2024 CAN in Automation

112

The plausibility check to verify that a firmware
is suitable for a target is usually proprietary
and does not depend on the communication
protocol. A suitable method is to prefix the
.bin or .hex file of the application with a
header containing metadata that is checked
in the bootloader.

For data transfer, one could rely on the
data link layer and its capabilities, but most
download files include a checksum in the
header that is compared with a calculated
one after or during the download.

Authentication of the download tool is an
important issue, but the capabilities of the
various higher layer protocols vary widely.

Another requirement is access to different
memory areas, e.g. one for the application
and additional areas for configuration or
calibration data. Some protocols only allow
access to fixed areas, while others allow
arbitrary access to memory addresses.

Another topic that is more and more important
is the encryption of the firmware. Thus a
bootloader should be able to decrypt an
encrypted firmware. Although some protocols
define a way to signal if an application is
encrypted or compressed, the encryption or
compression is proprietary in all cases.

Small code size: As with all requirements
most of the discussed features increase both
the complexity of the bootloader and code
size as well. So occasionally one might have
to accept that not all requirements can be
met if a specific code size shall not be
exceeded.

The table below shows an example memory
layout with 16 KiB flash memory used by the
bootloader.

Table 1: Flash layout example

III. A brief introduction into CAN based
 protocols

The paper does not aim to explain all
mentioned CAN based higher-protocol and
in order to avoid unnecessary complexity
the explanation will focus on classical CAN
and the transport protocols provided by
these CAN based protocols. Additionally,
only the classical CAN variants of the
protocols are discussed, but all principles
apply to CAN FD as well.

In CANopen a new firmware will be written
to a CANopen object (e.g. 0x1F51:1) and
the data will be written to the object via a
so called SDO transfer. The CANopen
specifications do not define any memory
addresses where the object will be stored
and the protocol does not allow to define any
memory addresses, so the assignment of a
memory address is implemented implicitly in
the bootloader.

There are three different variants of an
SDO transfer but only two of them allow the
transfer of data exceeding the length of a
CAN message. The CANopen segmented
SDO transfer starts with an initialization
message and after that the payload is
transferred in CAN frames, which contain
one protocol byte and seven bytes of
payload.

Figure 1: CANopen Segmented SDO
Transfer

Each CAN frame of a segmented SDO
transfer is confirmed by another CAN
frame from the ECU. This simplifies the
implementation and reduces the problem of
receiving multiple CAN with the same CAN-
ID messages back-to-back, but it delays the
firmware download significantly. In order to

iCC 2024 CAN in Automation

113

improve the SDO transfer speed, another
SDO transfer - the SDO block transfer had
been standardized. The SDO block transfer
also starts with an initialization messages,
but after that the payload is transferred in
blocks of CAN messages up to 127 CAN
frames that are confirmed after one block.

Figure 2: CANopen SDO Block Transfer

J1939 CAM11/CAM21 is a way to use the
CANopen SDO transfers in J1939, but the
J1939 Connection Mode Data Transfer
(CMDT) is much more common. J1939
Connection Mode Data Transfer (CMDT)
implements a hand-shake between to
nodes. The transfer starts with a Request-
to-Send (RTS) message where the data and
the size are announced. The ECU replies
with a Clear-to-Send (CTS) message
indicating the maximum number of CAN
message in one block. The download
sends a block of up to 255 messages which
are confirmed by a CTS message again.
The transfer is closed with an End-of-
Message-Acknowledge at the end of the
transfer.

Figure 3: J1939 CMDT Transport Protocol
(block size 6 only to illustrate the protocol)

UDS uses ISO-TP as transport protocol.
ISO-TP is standardized in ISO 15745-2 and
is merely a transport protocol without any
application layer. A ISO-TP transfer also
starts with an initialization message (First
Frame) followed by a Flow Control message
and multiple Consecutive Frames, which
contain one byte of protocol data and seven

bytes of payload as the other protocols. The
Flow Control message contains a block size
indicating the number of CAN messages
per block and a separation time to force the
transmitter to introduce gaps between the
CAN messages.

Figure 4: ISO-TP

So from a wider perspective the CANopen
SDO block transfer, the CMDT transport
protocol from J1939 and ISO-TP are very
similar. Without gaps between the CAN
messages all three transport protocols offer
the same performance, which is significantly
higher than the CANopen segmented SDO
transfer.

IV. Bootloader features of the different
 protocols

CANopen according to the specification
CiA 302 defines the following sequence of
actions

• erase of a fixed memory section
• firmware transfer via segmented SDO
 transfer or SDO block transfer to a fixed
 memory section
• read of checksum to verify the correct
 download

Multiple memory sections can be defined
but there is no defined way to write to a
specific flash memory address. Furthermore
CANopen according to CiA 302 does
not provide standardized mechanisms
for authentication, identification of the
download tool and security handling. Certain
CANopen application profiles, which define
domain-specific functionality for specific
application such as e.g. elevators or light-
electric vehicles, have defined password
objects to prevent unauthorized access to
the bootloader. However these password
objects an easily be defeated by reply
attacks.

iCC 2024 CAN in Automation

114

The J1939 PGNs CAM11/CAM21 provide
a way to transmit ‘CANopen Application
Messages’ in a J1939 network. The J1939
Digital Annex reserves the 2 PGNs for
CANopen and the CANopen specification
CiA 510 defines how to use the SDO
protocols within these PGNs. So a J1939
CAM11/CAM21 bootloader is a variant of
a CANopen bootloader in a J1939 environ-
ment. Reasons to use such a bootloader
may be existing CANopen knowledge that
shall be reused and to avoid the complexity
of a J1939 DM bootloader.

J1939 itself defines a set of so called
diagnostic messages (DM) in the specifi-
cation J1939-73. A subset of these diagnostic
message is suitable for a firmware download:

• DM14 – Memory Access Request
• DM15 – Memory Access Response
• DM 16 – Binary Data Transfer
• DM 17 – Boot Load Data
• DM18 – Data Security

In general these Diagnostic Messages allow
a specification of a specific address in the
device’s memory and a seed-key based
authorization of the download tool before the
transmission of the data. A fingerprint to store
an identification of the download tool or repair
shop is not standardized with J1939.

UDS defines various so called sessions
and the bootloader is usually active after
a transition into the programming session.
Write access to the device’s flash can be
granted via a Seed-Key-Mechanism or an
Authentication mechanisms and the UDS
service RequestDownload allows to transmit
the specific address and the size of the data. It
is possible to write a fingerprint into an ECU to
identify the download tool or repair shop. After
that the firmware transfer itself is realized by
multiple TransferData services which use ISO-
TP as transport protocol. Additionally, there
are services to check the transferred firmware
by checking a CRC or other means.

V. CiA TF Generic CAN Bootloaders

The CiA Task Force generic CAN Bootloaders
started its work in 2021 and finished the
CiA specification CiA 710 in 20241. Despite

the name of the working group the work
was focused on improving the CANopen
bootloader capabilities. The transfer speed
for CANopen using the SDO block transfer
was already at par with other protocols, but
CANopen bootloaders according to CiA 302
lack the flexibility of other protocols and no
security mechanisms had been standardized
so far for CANopen.
The result of work was the CiA 710 specification
which adds additional objects to the CANopen
object dictionary, and these objects provide
additional features for the bootloader:

• object 0x1F59 –Autostart behavior of the
 applications

Definition which application shall be started, if
applicable.

• object 0x1F5A – Application security
 access

Read access to this object provides a seed for
a security algorithms and writing a key to this
object unlocks write access to the memory.
The algorithm itself is manufacturer-specific.

• object 0x1F5B – Mode switch delay

Definition of possible delays between the
transition from application to bootloader or
vice versa.

• object 0x1F5C – Bootloader mode switch

Writing a specific value to this object triggers
the transition to the bootloader (if allowed).

• object 0x1F5D – application version
 string

String to identify the version of each program.
The format of this string is manufacturer-
specific.

• object 0x1F5E – application or bootloader
 identity

String to identify the application or bootloader.
The format of this string is manufacture-
specific.

• object 0x1F6F – Timeout flash operations

iCC 2024 CAN in Automation

115

Definition of a maximum timeout for flash
operations (erase, write) when the device
may be non-responsive.

So most of the weak points of the previous
CANopen bootloaders had been overcome
and also additional features such as
autostart configurations and transition
delays had been added.

VI. Comparison of various bootloader
 approaches

The following table compares and summa-
rizes the various bootloader approaches with
the different higher-layer CAN protocols.

VII. Conclusion and outlook

The comparison chart shows that all
variants offer the same speed, but a UDS
based CAN bootloader offers best results
regarding flexibility and security. With its
efficient use of CAN-IDs - only two or three
are required – it can also be used in parallel
with other protocols in the same network.

CAN FD has not been discussed in detail
in this paper but with a frame length of 64
bytes all statements in this protocol also
apply to CAN FD.

Finally, possible CAN XL based imple-
mentations of the discussed higher-layer
protocols have not been standardized yet.
Anyway, one can assume that any firmware
will not fit into a single CAN XL frame and so

transport protocols will also be required in the
future. Due the higher speed and the longer
payload of CAN XL the performance criteria
will become less crucial and the additional
features of the different variants such as
encryption, security and authentication will
become more important.

References

[1] CiA 301, Version 4.2.0, CANopen
 application layer and communication profile
[2] CiA 302, Framework for CANopen managers
[3] SAE J1939-21, Data Link Layer
[4] SAE J1939-73, Application Layer-Diagnotics
[5] ISO 15765-2, Road vehicles – Diagnostic
 communication over Controller Area Network
 (DoCAN) – Part 2: Transport protocol and
 network layer services
[5] ISO 14229-1, Road vehicles – Unified
 diagnostic services (UDS), Part 1:
 Application layer

Torsten Gedenk
emotas embedded communication
Fritz-Haber-Str. 9
DE-06217 Merseburg
www.emotas.de

Table 2: Comparision of various bootloader (+ good/fast/small size, o average, - no feature/slow)

