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Security concepts with CAN XL

Peter Decker (Vector Informatik)

Given the rise of automotive Ethernet and in view of the growing number of communication 
systems, a consolidation appears reasonable to limit complexity and costs. With 
Ethernet now covering infotainment, ADAS, telematics and connectivity at 100...1000 
Mbit/s, CAN and CAN FD operate in the range of 0.5...5 Mbit/s and are responsible for 
engine management, and body control. CAN XL or 10BASE-T1S can potentially be used 
in the future for control systems.
Considering that about 90 % of all network nodes communicate at speeds below or up 
to	10	Mbit/s,	the	10	Mbit/s	domain	covers	a	wide	field	of	application.

Defense in Depth

A trending concept in the IT industry in the 
last decades was the application of multiple 
independent layers of security controls in 
an information technology system with the 
intention to provide redundancy in case one 
of these layers fails. This principal is called 
Defense in Depth.
Therefore, it is not surprising that the 
industry demands a security layer for both 
competitors in the 10Mbit/s domain that 
works in an automotive environment to 
satisfy this trend.
This paper deals with two problems you 
encounter when you want to establish a 
security layer on a multi-drop Data Layer. 
Namely developing a fast Key Agreement 
Protocol and enabling End-to-End 
Encryption when connecting two networks 
with a Bridge Device.
Following the general idea of Defense in 
Depth the security controls mentioned in this 
article are by no means intended to replace 
any of the already existing security controls 
within the OSI layers (e.g., SecOC, IPSec or 
TLS) but to supplement them.

MACsec and CANsec

While Ethernet has MACsec and its 
accompanying Key Agreement protocol 
MKA already defined for a decade, CiA is 
in progress of specifying an CANsec for 
CAN XL with CiA 613-2. Both MACsec’s 
and CANsec’s goals are to provide 

Confidentiality, Integrity, and Authenticity1 

with line-speed performance on top of their 
respective Data Layer.

Figure 1: MACsec / CANsec2 

To meet these requirements both 
technologies use block ciphers with a mode 
of operation that provides Authenticated 
Encryption and Associated Data (AEAD). 
While MACsec only supports AES in various 
flavors, CANsec plans to support lightweight 
cryptography in form of ASCON [3].

The protected frames carry a monotonically 
increasing Packet Number (PN) to protect 
against Replay Attacks. This Packet Number 
is used to derive a Nonce that is required as 
input of the respective AEAD algorithm.

1 Authenticity in a strict sense is not achievable  
 between multiple participants and just one key.  
 Authenticity means that you can prove that a  
 message was sent by someone in possession of  
 the key.
2 Details omitted.
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With these cornerstones set it is not possible 
to use a permanently valid encryption key 
for entire lifecycle of the network because 
the reuse of a nonce with the same  
key effectively makes the encryption 
ineffective.

Figure 2: GCM Nonce Reuse

Therefore, a mechanism is required to 
agree on a temporarily valid session key - or 
Secure Association Key (SAK) according to 
the MKA specification - and replace this key 
regularly.

MKA in the 10Mbit/s domain

Ethernet has the well-proven, feature 
rich, but also quite complex MACsec Key 
Agreement specified to solve this challenge, 
so it feels quite natural to choose MKA  
also as Key Agreement solution for both 
CANsec (CAN XL) and MACsec (10BASE-
T1S).

MKA is designed around a zero knowledge 
and zero assumptions approach, and each 
participant only relies on the quality of its own 
implementation. It does not need to know 
how many participants are, will be or were 
online and the participants are not required 
to send data with a certain frequency 
as MKA uses dedicated MACsec Key 
Agreement Protocol Data Units (MKPDU). 
Furthermore, replay protection is ensured 
by the random Member Identifier each 
participant generates during start-up. If the 
random number generator of the participant 
in question has a high quality this participant 
is safe against replay attacks of MKA control 
messages.

There are though two decisive differences 
between the typical MKA application and the 
intended application in the 10 Mbit/s domain.

Firstly, while the MACsec Key Agreement 
is specified for an arbitrary number of 
participants (or Peers according to IEEE 
802.1) it was hardly every used with more 
than two.

Secondly, the MKA Hello time is two 
seconds. Consequently, a key cannot be 
agreed upon in less than two seconds3  and 
will take three seconds on average[1].

While this Key Agreement time is acceptable 
in the typical Ethernet environment like a 
Data Center, it is not in an automotive or other 
more timing sensitive environments. There 
is no consensus how much communication 
delay caused by the addition of a security 
layer is acceptable. Opinions ranges from a 
couple of milliseconds to over one hundred 
milliseconds. It all depends on the specific 
use case, but the three seconds MKA has to 
offer on average are too slow for the majority 
of (automotive) use cases.

Faster MKA

All following optimizations have the goal to 
improve the Key Agreement time (i.e. the 
time span between all participants being 
online and all participants can communicate 
with each other) without violating the 
existing specification [2]. So, the MKPDU 
and especially all included Parameter Sets 
are not modified in any way and no “shall” 
and “can” rules of the IEEE specification are 
violated.

In 2021 Dr. Völker proposed [1] a couple of 
modifications to optimize the Key Agreement 
time. The basic idea behind them:
Classify MKPDUs based on their content 
and modify the send frequency accordingly.

The first intuitive rule set you can produce, 
is that each participant sends an updated 
MKPDU whenever it has news to send that 
helps to achieve a key agreement. These 
rules are:

3 Exclusive lower bound.
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(1) The Potential Peer or Live Peer List  
 changed.
(2) A new Secure Association Key needs to  
 be distributed.
(3) A new Secure Association Key has been  
 installed and needs confirmation.
(4) A new participant wants to join the  
 Connectivity Association.
We call this set of rules the Basic	Profile.

As shown in [1] these modifications yield 
substantial results, reducing the time 
required for a Key Agreement below  
30 milliseconds.

Welcome to multi-drop

Let us apply these modifications to MKA, 
scale up the number of participants  to n 
and do a theoretical analysis of how many 
messages need to be exchange and how 
many messages each participant4 must 
process.
If all participants come online simultaneously, 
each one will generate a MKA Hello message 
that includes its own randomly generated 
Member Identifier. Each participant receives 
n - 1 of these messages, process one at a 
time, add n - 1 entries to its Potential Peer 
List and send a response n – 1 times. In total 
n2 messages are sent and n2-n messages 
must be processes by each participant. 
As consequence this initial step of Key 
Agreement does not scale linearly with the 
number of participants.

Figure 3: Basic Profile – Participant 
Discovery5 

This problem can be solved if we modify our 
rules slightly to:
(1) A Key Server Peer6  was added to the  
 Potential Peer or Live Peer List.
We call this modified set of rules the 
Optimized Profile.

In a typical setup you only have one or 
two Key Server capable participants. This 
brings the number of messages that must 

be processed down to .

Figure 4: Optimized Profile – Participant 
Discovery

A similar phenomenon can be observed 
during key distribution. According to the 
MKA specification a Key Server shall 
distribute a new SAK if a participant is added 
to its Live Peer List. In our system start-up 
scenario, the Key Server therefore issues a 
new SAK when it gets the first MKA Hello 
response. And then another one, when it 
gets the second response. This continues 
until the Live Peer List finally contains the 
Member Identifiers of all participants. In total  
n – 1 SAK are distributed and only the last  
one is confirmed by all participants. 
Unfortunately, all SAKs are acknowledged by 
the participant whose MKA Hello was the first 
one to be processed by the Key Server. All 
SAKs but the first one, are acknowledged by 
the participant whose MKA Hello was second 
to be processed. This also continues until 
the last distributed SAK is finally accepted 
and acknowledged by all participants. 
In total each participant must process a  

 number of messages to complete the 
Key Agreement.

Figure 5: Basic Profile – Key Distribution

4  Typically, eight to ten.
5  Only Node n related MKA Hello Messages are  
 shown.
6 A Peer claiming to be able to perform the tasks of a  
 Key Server.
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To combat that problem the number of Key 
Distribution messages by the Key Server 
must be reduced. One option to realize 
that is to give the Key Server knowledge 
about the number of participants. With that 
knowledge the Key Server can intentionally 
delay the distribution of the SAK until it 
received the MKA Hello messages of all 
expected participants. This requires a 
completely static network setup and is for 
this reason not applicable for all use cases. 
Consider the case where one participant has 
a significantly7  slower start-up behaviour 
preventing the rest of the network from 
communicating.
A second approach that conserves the MKA 
property of being network topology unaware 
is to throttle the issuing of new SAKs. 
After processing an incoming MKPDU the 
Key Server reaches a state that requires 
it to issue a new SAK. Instead of emitting 
the corresponding MKPDU immediately it 
delays this emission for certain time span8. 
This gives the Key Server time to process 
other incoming MKA Hello messages (s. 
Figure 6) and issue a SAK that can be used 
by more or even all participants. Let us add 
this behaviour to the Optimized Profile.

In simulations with sixteen participants 
this optimization reduced the number of 
distributed SAKs down to two and therefore 
eliminated the quadratic increase of runtime. 
The approach offers quite a bit of flexibility. 
Depending on the network setup you can 
choose the throttle time to optimize the Key 
Agreement times.

Examples:
(1) All participants are identically fast. You  
 set the throttle time to a small value but  
 big enough for the Key Server to process  
 all MKA Hello responses.
(2) One participant is much slower than  
 the rest but provides vital information.  
 You set the throttle time to a value that  
 gives the slow participant enough time  
 to send its MKA Hello response.

Even better this configuration must only 
be applied to the Key Server(s) in case 
the attached participants do not offer this 
option, or you do not have access to its 
configuration.

Figure 6: Optimized Profile – Key 
Distribution CANoe Simulation

We at Vector used our well-known tool 
CANoe to evaluate the effectiveness of the 
described tuning options.

Figure 7: MKA Simulation in CANoe

The current simulation is capable of 
simulating MKA over both CAN XL and 
Ethernet with up to seventeen participants.

Various parameters are adjustable (e.g., 
processing time for one MKPDU and the 
throttle time).

The following table shows the results of 
running the simulation with both profiles and 
eight and sixteen participants with Ethernet 
as Data Layer.

Time denotes the timespan between the first 
sent message of the Key Server and the 
Key Server having received all participants’ 
key acknowledgement message9.

7 More than forty milliseconds slower.
8 Ten milliseconds yield appealing results in a  
 simulation.
9 MACsec SAK Use parameter set.
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Messages denote the number of messages 
received by the Key Server within two 
seconds after it started the Key Agreement.

Table 1: Simulation Results11 

The numbers show that the Optimized Profile 
can reduce the number of needed messages 
significantly and because of this the Key 
Agreement time. Even more importantly it 
eliminates the quadratic runtime behaviour.

 
Figure 8: CANoe Test Report

MKA Alternatives

It depends on the requirements one has 
regarding a Key Agreement on top of what 
the name implies. If you have the protection 
goal that a Key Agreement is not attackable 
with valid recorded traffic from an isolated 
participant, the Key Agreement protocol 
requires some challenge response protocol 
part that enforces the inclusion of a value 
(the challenge) that is out of control of a 
potential attacker and has a good quality (is 
as random as possible).
There are two ways to achieve that. The first 
one requires a well synchronized common 
time source. This is a challenge itself and 
not discussed in this paper. The second 
one requires each participant to generate a 
random number, transmitting it to all other 
participants, which in turn must include all 
these random numbers (named Member 
Identifier in MKA) in their responses. This 

is exactly what MKA does. Every alternative 
must do something similar and inevitably 
requires at least one message round trip and 
therefore transmission plus processing time. 
Key Agreements with protection against this 
kind of replay attacks are not achievable 
without a setup time.

Conclusion

Simulation results clearly indicate that 
MKA can be optimized to a level that a Key 
Agreement in a typical network setup with 
up to sixteen participants can be realized 
under fifty milliseconds. This is a huge 
improvement compared to standard MKA 
considering that only sharper timings and 
an analysis of what is important has been 
applied.
The approach keeps all the positive 
properties of MKA (many features, well-
proven, network agnostic) and makes it 
feasible for a lot of use cases that require 
faster communication ramp-up times.

End-to-End CANsec in Bridging 
Scenarios

There are use cases in which a Bridge Device 
is part of two or more CAN XL networks to 
enable the forwarding of messages from 
CAN Bus A to CAN Bus B and vice versa.

Figure 9: Bridged CAN XL networks

It can happen that a Priority Identifier of a 
message from CAN Bus A is already used 
by a CAN XL Node in CAN Bus B, so it 
cannot be forwarded unmodified without 
causing Priority Identifier collisions.

10 Incoming messages processed by Key Server  
 within two seconds after the Key Server sent its first  
 message.
11 Parameters of the simulation are documented in  
 Appendix A - Simulation Parameters



iCC 2024 CAN in Automation

82

If you want to secure such a system with 
CANsec, you can do this with distinct 
Connectivity Associations for Bus A and Bus 
B. The Bridge Device decrypts incoming 
messages, modifies the Priority Identifier as 
needed and re-encrypts the message. With 
Defense in Depth in mind this may be not 
the best option as this means that the Bridge 
Device must be in possession of the long-term 
secrets of both Associations which makes it a 
prime target for an attacker.

From a security point of view, it is desirable to 
have an End-to-End encryption, i.e., the Bridge 
Device does no cryptography and therefore 
needs no access to any keys. To enable such 
scenarios with CANsec the current CiA 613-2 
draft specifies options to exclude the Priority 
Identifier and the Virtual CAN Identifier (VCID) 
from the integrity protection provided by 
CANsec.
While these options indeed make it possible 
to realize such scenarios, you should use 
these with extreme caution as it is of utmost 
importance that neither the Priority Identifier 
nor the VCID contain semantic information.

Never	use	Priority	Identifier	as	an	Identifier

One of the improvements of CAN XL over 
classic CAN and CAN FD that it breaks the 
semantically unfortunate double purpose 
of the Identifier field. Before CAN XL the 
Identifier field was both a priority instruction to 
the physical layer and a message identifier12. 
Therefore, you cannot alter the Identifier 
field without changing the meaning of the 
message. With CAN XL the priority instruction 
is the Priority Identifier, and the Acceptance 
Field (AF) takes responsibility to identify the 
message’s meaning.
In a perfect world, system engineers designing 
a CAN XL network have this in mind und do 
not mix up the independent purpose of the 
two fields. If this is the case, CANsec supports 
bridging with End-to-End encryption with its 
exclude options. But what happens if at least 
one CAN XL Node is a simple migration of 
an existing CAN FD implementation? It is 
likely that the Priority Identifier is just the CAN 
Identifier of the legacy project because it was 
the easiest way to migrate the project to CAN 
XL13. The Priority Identifier has more meaning 
than desired, and you cannot bridge the CAN 

XL messages without losing the CANsec 
protection.
Sadly, the current CANsec draft does not offer 
a secure solution for this scenario.
Another disadvantage of CANsec’s exclude 
options is that all Nodes in the network must be 
configured in advance that certain messages 
are intended to be forwarded and exclude 
the Priority Identifier from its ICV for that 
reason. It is not possible to attach a second 
CAN Bus via a Bridge Device without altering 
the configuration which may be not possible 
because you do not have access to all Nodes. 
This limits extension options.

CAN-in-CAN

If you have a scenario like this where 
the Priority Identifier14 conveys semantic 
information and/or want to have the flexibility to 
add a Bridge Device optionally or temporarily, 
you need a solution that satisfies the following 
requirements:
(1) Nodes do not need to know that their 
message may be cross the boundary of their 
CAN XL network.
(2) All fields of the CAN XL Header are 
protected by CANsec.

A solution that meets above requirements and 
does not break the end-to-end encryption is 
CAN-in-CAN15:
The configuration of the originator network 
stays unmodified, so every Node transmits 
CANsec protected Frames. The Bridge 
Device identifies Frames to be forwarded and 
uses the whole CAN XL Frame including its 
Header data as payload for a new “wrapped” 
Frame with a new CAN XL Header16. Figure 10 
illustrates the concept.

Figure 10: CAN-in-CAN

12 Defining what the meaning of the message is.
13 Simply use the CAN Identifier for both Priority  
 Identifier and Acceptance Field to avoid that problem.
14 Or the Virtual CAN Identifier.
15 No CiA specification available.
16 This target network Frame can be CANsec protected  
 if desired.
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The Nodes in the receiving network identify 
a forwarded frame by its special Service 
Data Type17, remove the Target Network 
Header and can now validate the unmodified 
CANsec protected Frame. None of its 
content (incl. Priority Identifier and VCID) 
can be manipulated without invalidating the 
Frame.

Figure 11: Communication Example

As MKA control messages must pass 
through the bridge the same way, all 
participating Nodes must be capable of the 
CAN-in-CAN concept.

Conclusion

While the CAN-in-CAN concept requires 
twelve extra bytes in the CAN XL payload 
it offers more flexibility and a possibility 
to securely bridge CAN XL networks with 
legacy components.

Appendix A - Simulation Parameters
PduProcessingTime 1 ms
PduCreationTime 1 ms
RateLimit 10 ms
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