
iCC 2024 CAN in Automation

77

Security concepts with CAN XL

Peter Decker (Vector Informatik)

Given the rise of automotive Ethernet and in view of the growing number of communication
systems, a consolidation appears reasonable to limit complexity and costs. With
Ethernet now covering infotainment, ADAS, telematics and connectivity at 100...1000
Mbit/s, CAN and CAN FD operate in the range of 0.5...5 Mbit/s and are responsible for
engine management, and body control. CAN XL or 10BASE-T1S can potentially be used
in the future for control systems.
Considering that about 90 % of all network nodes communicate at speeds below or up
to	10	Mbit/s,	the	10	Mbit/s	domain	covers	a	wide	field	of	application.

Defense in Depth

A trending concept in the IT industry in the
last decades was the application of multiple
independent layers of security controls in
an information technology system with the
intention to provide redundancy in case one
of these layers fails. This principal is called
Defense in Depth.
Therefore, it is not surprising that the
industry demands a security layer for both
competitors in the 10Mbit/s domain that
works in an automotive environment to
satisfy this trend.
This paper deals with two problems you
encounter when you want to establish a
security layer on a multi-drop Data Layer.
Namely developing a fast Key Agreement
Protocol and enabling End-to-End
Encryption when connecting two networks
with a Bridge Device.
Following the general idea of Defense in
Depth the security controls mentioned in this
article are by no means intended to replace
any of the already existing security controls
within the OSI layers (e.g., SecOC, IPSec or
TLS) but to supplement them.

MACsec and CANsec

While Ethernet has MACsec and its
accompanying Key Agreement protocol
MKA already defined for a decade, CiA is
in progress of specifying an CANsec for
CAN XL with CiA 613-2. Both MACsec’s
and CANsec’s goals are to provide

Confidentiality, Integrity, and Authenticity1

with line-speed performance on top of their
respective Data Layer.

Figure 1: MACsec / CANsec2

To meet these requirements both
technologies use block ciphers with a mode
of operation that provides Authenticated
Encryption and Associated Data (AEAD).
While MACsec only supports AES in various
flavors, CANsec plans to support lightweight
cryptography in form of ASCON [3].

The protected frames carry a monotonically
increasing Packet Number (PN) to protect
against Replay Attacks. This Packet Number
is used to derive a Nonce that is required as
input of the respective AEAD algorithm.

1 Authenticity in a strict sense is not achievable
 between multiple participants and just one key.
 Authenticity means that you can prove that a
 message was sent by someone in possession of
 the key.
2 Details omitted.

iCC 2024 CAN in Automation

78

With these cornerstones set it is not possible
to use a permanently valid encryption key
for entire lifecycle of the network because
the reuse of a nonce with the same
key effectively makes the encryption
ineffective.

Figure 2: GCM Nonce Reuse

Therefore, a mechanism is required to
agree on a temporarily valid session key - or
Secure Association Key (SAK) according to
the MKA specification - and replace this key
regularly.

MKA in the 10Mbit/s domain

Ethernet has the well-proven, feature
rich, but also quite complex MACsec Key
Agreement specified to solve this challenge,
so it feels quite natural to choose MKA
also as Key Agreement solution for both
CANsec (CAN XL) and MACsec (10BASE-
T1S).

MKA is designed around a zero knowledge
and zero assumptions approach, and each
participant only relies on the quality of its own
implementation. It does not need to know
how many participants are, will be or were
online and the participants are not required
to send data with a certain frequency
as MKA uses dedicated MACsec Key
Agreement Protocol Data Units (MKPDU).
Furthermore, replay protection is ensured
by the random Member Identifier each
participant generates during start-up. If the
random number generator of the participant
in question has a high quality this participant
is safe against replay attacks of MKA control
messages.

There are though two decisive differences
between the typical MKA application and the
intended application in the 10 Mbit/s domain.

Firstly, while the MACsec Key Agreement
is specified for an arbitrary number of
participants (or Peers according to IEEE
802.1) it was hardly every used with more
than two.

Secondly, the MKA Hello time is two
seconds. Consequently, a key cannot be
agreed upon in less than two seconds3 and
will take three seconds on average[1].

While this Key Agreement time is acceptable
in the typical Ethernet environment like a
Data Center, it is not in an automotive or other
more timing sensitive environments. There
is no consensus how much communication
delay caused by the addition of a security
layer is acceptable. Opinions ranges from a
couple of milliseconds to over one hundred
milliseconds. It all depends on the specific
use case, but the three seconds MKA has to
offer on average are too slow for the majority
of (automotive) use cases.

Faster MKA

All following optimizations have the goal to
improve the Key Agreement time (i.e. the
time span between all participants being
online and all participants can communicate
with each other) without violating the
existing specification [2]. So, the MKPDU
and especially all included Parameter Sets
are not modified in any way and no “shall”
and “can” rules of the IEEE specification are
violated.

In 2021 Dr. Völker proposed [1] a couple of
modifications to optimize the Key Agreement
time. The basic idea behind them:
Classify MKPDUs based on their content
and modify the send frequency accordingly.

The first intuitive rule set you can produce,
is that each participant sends an updated
MKPDU whenever it has news to send that
helps to achieve a key agreement. These
rules are:

3 Exclusive lower bound.

iCC 2024 CAN in Automation

79

(1) The Potential Peer or Live Peer List
 changed.
(2) A new Secure Association Key needs to
 be distributed.
(3) A new Secure Association Key has been
 installed and needs confirmation.
(4) A new participant wants to join the
 Connectivity Association.
We call this set of rules the Basic	Profile.

As shown in [1] these modifications yield
substantial results, reducing the time
required for a Key Agreement below
30 milliseconds.

Welcome to multi-drop

Let us apply these modifications to MKA,
scale up the number of participants to n
and do a theoretical analysis of how many
messages need to be exchange and how
many messages each participant4 must
process.
If all participants come online simultaneously,
each one will generate a MKA Hello message
that includes its own randomly generated
Member Identifier. Each participant receives
n - 1 of these messages, process one at a
time, add n - 1 entries to its Potential Peer
List and send a response n – 1 times. In total
n2 messages are sent and n2-n messages
must be processes by each participant.
As consequence this initial step of Key
Agreement does not scale linearly with the
number of participants.

Figure 3: Basic Profile – Participant
Discovery5

This problem can be solved if we modify our
rules slightly to:
(1) A Key Server Peer6 was added to the
 Potential Peer or Live Peer List.
We call this modified set of rules the
Optimized Profile.

In a typical setup you only have one or
two Key Server capable participants. This
brings the number of messages that must

be processed down to .

Figure 4: Optimized Profile – Participant
Discovery

A similar phenomenon can be observed
during key distribution. According to the
MKA specification a Key Server shall
distribute a new SAK if a participant is added
to its Live Peer List. In our system start-up
scenario, the Key Server therefore issues a
new SAK when it gets the first MKA Hello
response. And then another one, when it
gets the second response. This continues
until the Live Peer List finally contains the
Member Identifiers of all participants. In total
n – 1 SAK are distributed and only the last
one is confirmed by all participants.
Unfortunately, all SAKs are acknowledged by
the participant whose MKA Hello was the first
one to be processed by the Key Server. All
SAKs but the first one, are acknowledged by
the participant whose MKA Hello was second
to be processed. This also continues until
the last distributed SAK is finally accepted
and acknowledged by all participants.
In total each participant must process a

 number of messages to complete the
Key Agreement.

Figure 5: Basic Profile – Key Distribution

4 Typically, eight to ten.
5 Only Node n related MKA Hello Messages are
 shown.
6 A Peer claiming to be able to perform the tasks of a
 Key Server.

iCC 2024 CAN in Automation

80

To combat that problem the number of Key
Distribution messages by the Key Server
must be reduced. One option to realize
that is to give the Key Server knowledge
about the number of participants. With that
knowledge the Key Server can intentionally
delay the distribution of the SAK until it
received the MKA Hello messages of all
expected participants. This requires a
completely static network setup and is for
this reason not applicable for all use cases.
Consider the case where one participant has
a significantly7 slower start-up behaviour
preventing the rest of the network from
communicating.
A second approach that conserves the MKA
property of being network topology unaware
is to throttle the issuing of new SAKs.
After processing an incoming MKPDU the
Key Server reaches a state that requires
it to issue a new SAK. Instead of emitting
the corresponding MKPDU immediately it
delays this emission for certain time span8.
This gives the Key Server time to process
other incoming MKA Hello messages (s.
Figure 6) and issue a SAK that can be used
by more or even all participants. Let us add
this behaviour to the Optimized Profile.

In simulations with sixteen participants
this optimization reduced the number of
distributed SAKs down to two and therefore
eliminated the quadratic increase of runtime.
The approach offers quite a bit of flexibility.
Depending on the network setup you can
choose the throttle time to optimize the Key
Agreement times.

Examples:
(1) All participants are identically fast. You
 set the throttle time to a small value but
 big enough for the Key Server to process
 all MKA Hello responses.
(2) One participant is much slower than
 the rest but provides vital information.
 You set the throttle time to a value that
 gives the slow participant enough time
 to send its MKA Hello response.

Even better this configuration must only
be applied to the Key Server(s) in case
the attached participants do not offer this
option, or you do not have access to its
configuration.

Figure 6: Optimized Profile – Key
Distribution CANoe Simulation

We at Vector used our well-known tool
CANoe to evaluate the effectiveness of the
described tuning options.

Figure 7: MKA Simulation in CANoe

The current simulation is capable of
simulating MKA over both CAN XL and
Ethernet with up to seventeen participants.

Various parameters are adjustable (e.g.,
processing time for one MKPDU and the
throttle time).

The following table shows the results of
running the simulation with both profiles and
eight and sixteen participants with Ethernet
as Data Layer.

Time denotes the timespan between the first
sent message of the Key Server and the
Key Server having received all participants’
key acknowledgement message9.

7 More than forty milliseconds slower.
8 Ten milliseconds yield appealing results in a
 simulation.
9 MACsec SAK Use parameter set.

iCC 2024 CAN in Automation

81

Messages denote the number of messages
received by the Key Server within two
seconds after it started the Key Agreement.

Table 1: Simulation Results11

The numbers show that the Optimized Profile
can reduce the number of needed messages
significantly and because of this the Key
Agreement time. Even more importantly it
eliminates the quadratic runtime behaviour.

Figure 8: CANoe Test Report

MKA Alternatives

It depends on the requirements one has
regarding a Key Agreement on top of what
the name implies. If you have the protection
goal that a Key Agreement is not attackable
with valid recorded traffic from an isolated
participant, the Key Agreement protocol
requires some challenge response protocol
part that enforces the inclusion of a value
(the challenge) that is out of control of a
potential attacker and has a good quality (is
as random as possible).
There are two ways to achieve that. The first
one requires a well synchronized common
time source. This is a challenge itself and
not discussed in this paper. The second
one requires each participant to generate a
random number, transmitting it to all other
participants, which in turn must include all
these random numbers (named Member
Identifier in MKA) in their responses. This

is exactly what MKA does. Every alternative
must do something similar and inevitably
requires at least one message round trip and
therefore transmission plus processing time.
Key Agreements with protection against this
kind of replay attacks are not achievable
without a setup time.

Conclusion

Simulation results clearly indicate that
MKA can be optimized to a level that a Key
Agreement in a typical network setup with
up to sixteen participants can be realized
under fifty milliseconds. This is a huge
improvement compared to standard MKA
considering that only sharper timings and
an analysis of what is important has been
applied.
The approach keeps all the positive
properties of MKA (many features, well-
proven, network agnostic) and makes it
feasible for a lot of use cases that require
faster communication ramp-up times.

End-to-End CANsec in Bridging
Scenarios

There are use cases in which a Bridge Device
is part of two or more CAN XL networks to
enable the forwarding of messages from
CAN Bus A to CAN Bus B and vice versa.

Figure 9: Bridged CAN XL networks

It can happen that a Priority Identifier of a
message from CAN Bus A is already used
by a CAN XL Node in CAN Bus B, so it
cannot be forwarded unmodified without
causing Priority Identifier collisions.

10 Incoming messages processed by Key Server
 within two seconds after the Key Server sent its first
 message.
11 Parameters of the simulation are documented in
 Appendix A - Simulation Parameters

iCC 2024 CAN in Automation

82

If you want to secure such a system with
CANsec, you can do this with distinct
Connectivity Associations for Bus A and Bus
B. The Bridge Device decrypts incoming
messages, modifies the Priority Identifier as
needed and re-encrypts the message. With
Defense in Depth in mind this may be not
the best option as this means that the Bridge
Device must be in possession of the long-term
secrets of both Associations which makes it a
prime target for an attacker.

From a security point of view, it is desirable to
have an End-to-End encryption, i.e., the Bridge
Device does no cryptography and therefore
needs no access to any keys. To enable such
scenarios with CANsec the current CiA 613-2
draft specifies options to exclude the Priority
Identifier and the Virtual CAN Identifier (VCID)
from the integrity protection provided by
CANsec.
While these options indeed make it possible
to realize such scenarios, you should use
these with extreme caution as it is of utmost
importance that neither the Priority Identifier
nor the VCID contain semantic information.

Never	use	Priority	Identifier	as	an	Identifier

One of the improvements of CAN XL over
classic CAN and CAN FD that it breaks the
semantically unfortunate double purpose
of the Identifier field. Before CAN XL the
Identifier field was both a priority instruction to
the physical layer and a message identifier12.
Therefore, you cannot alter the Identifier
field without changing the meaning of the
message. With CAN XL the priority instruction
is the Priority Identifier, and the Acceptance
Field (AF) takes responsibility to identify the
message’s meaning.
In a perfect world, system engineers designing
a CAN XL network have this in mind und do
not mix up the independent purpose of the
two fields. If this is the case, CANsec supports
bridging with End-to-End encryption with its
exclude options. But what happens if at least
one CAN XL Node is a simple migration of
an existing CAN FD implementation? It is
likely that the Priority Identifier is just the CAN
Identifier of the legacy project because it was
the easiest way to migrate the project to CAN
XL13. The Priority Identifier has more meaning
than desired, and you cannot bridge the CAN

XL messages without losing the CANsec
protection.
Sadly, the current CANsec draft does not offer
a secure solution for this scenario.
Another disadvantage of CANsec’s exclude
options is that all Nodes in the network must be
configured in advance that certain messages
are intended to be forwarded and exclude
the Priority Identifier from its ICV for that
reason. It is not possible to attach a second
CAN Bus via a Bridge Device without altering
the configuration which may be not possible
because you do not have access to all Nodes.
This limits extension options.

CAN-in-CAN

If you have a scenario like this where
the Priority Identifier14 conveys semantic
information and/or want to have the flexibility to
add a Bridge Device optionally or temporarily,
you need a solution that satisfies the following
requirements:
(1) Nodes do not need to know that their
message may be cross the boundary of their
CAN XL network.
(2) All fields of the CAN XL Header are
protected by CANsec.

A solution that meets above requirements and
does not break the end-to-end encryption is
CAN-in-CAN15:
The configuration of the originator network
stays unmodified, so every Node transmits
CANsec protected Frames. The Bridge
Device identifies Frames to be forwarded and
uses the whole CAN XL Frame including its
Header data as payload for a new “wrapped”
Frame with a new CAN XL Header16. Figure 10
illustrates the concept.

Figure 10: CAN-in-CAN

12 Defining what the meaning of the message is.
13 Simply use the CAN Identifier for both Priority
 Identifier and Acceptance Field to avoid that problem.
14 Or the Virtual CAN Identifier.
15 No CiA specification available.
16 This target network Frame can be CANsec protected
 if desired.

iCC 2024 CAN in Automation

83

The Nodes in the receiving network identify
a forwarded frame by its special Service
Data Type17, remove the Target Network
Header and can now validate the unmodified
CANsec protected Frame. None of its
content (incl. Priority Identifier and VCID)
can be manipulated without invalidating the
Frame.

Figure 11: Communication Example

As MKA control messages must pass
through the bridge the same way, all
participating Nodes must be capable of the
CAN-in-CAN concept.

Conclusion

While the CAN-in-CAN concept requires
twelve extra bytes in the CAN XL payload
it offers more flexibility and a possibility
to securely bridge CAN XL networks with
legacy components.

Appendix A - Simulation Parameters
PduProcessingTime 1 ms
PduCreationTime 1 ms
RateLimit 10 ms

References

[1] Starting Up MACsec for Automotive
Ethernet, Dr. Lars Völker

[2] IEEE802.1X-2020
[3] Ascon - Lightweight Authenticated

Encryption & Hashing

17 Which is not standardized.

Peter Decker
Vector Informatik
Holderäckerstr. 36
DE-70499 Stuttgart
0711/80670-3615
Peter.Decker@vector.com
www.vector.com

Sven Hoffmann (Dipl.-Math.) has been
employed at Vector Informatik GmbH
since 2021 and serves as Senior Software
Engineer in the Research and Development
department.

