
iCC 2017 CAN in Automation

07-7

Automated trace analysis for testing of
CANopen devices

Andrew Ayre, Embedded Systems Academy, Inc.

Background

CANopen-based networks [1] are increasing in
their sophistication and therefore complexity.
Device profiles such as CiA447 Car Add-on
Devices [2] add new challenges for network
testing, debugging and confirmation of
correctness.
Many of the issues in this paper relate to any
CANopen network but CiA447 will be used
as a real-world illustration as it uses many of
the features that make testing and debugging
more complex.
CiA447 is designed to allow plug and play of
modules onto specialized passenger vehicles,
such as radios, roof bars, taximeters, etc. A
requirement is for a workshop to be able to
swap out a faulty module without having to
perform a systems integrator role. To facilitate
this Layer Setting Services (LSS) are used for
node ID assignment. Another requirement of
the application profile is to conserve battery
power when the vehicle is not in use. This
is achieved through a wake-up and sleep
power management protocol. Complexity
is increased due to each module being
responsible for going to sleep if the network
is faulty or the manager is missing.
A roof bar needs to know which node is a
roof bar controller, and therefore allowed to
send commands. This necessitates every
node “scanning” all other nodes on bootup to
determine minimal identity and functionality
information.

Taken together, these pieces of functionality
combine to create dynamic networks where
operation is only successful if multiple nodes
communicate together at a high level and
within specific time constraints.
If we look at how problems on these types of
networks manifest themselves, we can see
a variety of symptoms.
The network not going to sleep could be
caused by a faulty manager, a talkative
node or a node that failed to implement the
sleep protocol properly, amongst others.
If a node sleeps too soon then it could
wake up again and in turn stop other nodes
from sleeping. The result is that a simple
timing issue causes generation of many
unexpected messages. Communication
time outs could be caused by one node.
Failure of one node to scan another node
could result in a breakdown of functionality
– pressing a button on one node does not
result in a light turning on at another node. If
that light is a blue emergency light then this
type of failure becomes critical.
The scanning aspect of a network can result
in bursts of Service Data Object (SDO)
messages during network startup, possibly
at the same time as LSS is taking place.
This is a prime opportunity for messages to
be delayed and timeouts to occur, resulting
in robust nodes deciding to autonomously
retry operations or give up and enter an
error state. In some standards the maximum
message rate may be defined for types of

When it comes to testing of CANopen devices, one of the tests often conducted is the
test of a device in a “golden system”. This is an integration test where the device under
test is added to a known, good system. Unfortunately these tests are often conducted
without any in-depth analysis – main objective is to see if the device works or does
not work. This paper summarizes the functionality of an automated post analysis tool
for trace recordings. Specific filtering allows for the generation of an “event log” that
records only the main, system relevant events, warnings, errors and timings. It monitors
the reliability of cycle times as well as correctness of LSS and SDO sequences. The
reported results help to quickly pinpoint potential problems especially in dynamic
CANopen systems (where some node IDs might be assigned dynamically).

iCC 2017 CAN in Automation

07-8

node, which is difficult to test for. Analysis
of a log file can determine the actually
maximum message rate.
The key aspect of testing and debugging
such a system is that a failure in one area
can lead to knock-on effects causing one
or more failures in other areas, creating
confusion as to the true cause of the
problem.

Basic spreadsheet analysis

Applications that can record CAN messages
on the bus and export to comma-separated
value (CSV) files are common and easily
obtainable. For a CANopen network it
is highly beneficial to also have some
level of message interpretation, allowing
identification of the various types of
messages.

Figure 1: Messages in a spreadsheet

Once in a spreadsheet it is relatively easy
to find specific messages by searching
for keywords such as “emergency” or
“heartbeat”.
Provided timing information is including in
the export, the relative time between specific
messages can be calculated by finding the
two messages of interest then subtracting
one timestamp from the other.
However this approach is time consuming
and error prone. With many nodes on a
network there can be many heartbeat
messages for example, and missing one
may result in an incorrect analysis of
the timing behavior. Calculating the time
between messages in a spreadsheet is a
multi-step process.
Spreadsheets typically have a limit on the
number of rows that can be displayed.
For Excel it is just over one million rows
[3]. While at first glance this may appear
perfectly adequate in reality it is a significant
limitation for complex networks.
At 1 Mbps a message can take from 47 μs
(no data, no stuff bits) to 130 μs (eight bytes,

maximum stuff bits) to be transmitted. For
the worst case 100 % bus load:
1 048 576 x 47 μs = 49,28 seconds
1 048 576 x 130 μs = 136,31 seconds
Clearly this limitation is not suitable for
analysis of log files generated over a period
of hours or days, often a requirement for
capturing the messages around infrequent
problems.
When the number of messages becomes
large, even while still fitting into a
spreadsheet, manual analysis becomes
increasing difficult and the opportunity for
mistakes rises.
Consider the situation where LSS is used.
Typically for multiple nodes the LSS cycle
continues for node B while node A is booting
and sending out messages. This results
in LSS messages appearing mixed in with
other unrelated messages. A spreadsheet
can only show all messages in the order they
appeared on the bus, and time consuming
manipulation of the data is required to
separate out LSS so it can be analyzed in
isolation.

What can be analyzed?

Before considering an automated approach
we first need to understand what we can
analyze that would meet the needs of at
least 90 % of applications.
For any application profile that uses sleep
and wakeup being able to automatically
detect these message is useful. They will
show the start and ends of communication
periods and therefore aid in identifying
nodes that do not follow the protocol. The
protocol consists of a small number of
individual messages and therefore are easy
to find.
A similar situation exists for bootup and
emergency messages. In particular
emergency messages can indicate a node
has a problem, although this assumes the
firmware of the node is operating correctly.
Various timing information can be collected
to highlight delayed and missing messages.
The time between the transmissions
of heartbeats from each node is easily
determined. The time a node takes to
respond to SDO requests can also be
collected, which helps to highlight unusually
long access times. The time between

iCC 2017 CAN in Automation

07-9

Periodic Process Data Object (PDO)
message transmissions from each node
and verification of the inhibit times used can
be collected.

Figure 2: PDO analysis data

Moving to the next level more sophisticated
analysis can take place which involves
looking at the contents of the messages and
understanding what they mean. This includes
identifying an entire power cycle, from the
moment the manager wakes the network
up to the moment all nodes go to sleep. In a
single log file there may be many such power
cycles and identifying the beginning and end
is useful.

Figure 3: Wakeup message automatically
identified in trace log using a power symbol

Entire LSS sequences can be monitored
and the identities of each node found can be
listed. Such information helps with systems
integration, ensuring only the expected
nodes are present. Out of sequence, e.g.
unexpected messages, can be detected and
flagged as an error. An example of a missing
message that can be detected is the failure of
an LSS slave to respond to assignment of a
node identifier.
SDO segmented and block transfers can be
monitored for overall transfer time, aborts,
and total number of transfers. Unexpected
and out-of-order messages can also be
detected.
Numerical analysis is possible, collecting a
variety of information on the characteristics
of the network. This includes minimum,
maximum and average times for periodic
transmission and responses.
A running count can be maintained for total
messages and for each type of message.
Such a count allows easy detection of
unknown/unidentified messages and also
indicates which types of message use up the
most bandwidth.

Once message counts and timing information
is known the results can be compared against
pre-defined warning and error levels. If any
value exceeds one of these levels then the
user can be notified.

Global analysis examples:

•	 Last time a message was seen, by type
•	 Total counts of message types
•	 Maximum message rate seen
•	 Longest message burst length
•	 Number of active nodes
•	 Minimum and maximum PDO periodic

transmission times

Node-specific analysis examples:

•	 Total number of messages transmitted,
by type

•	 Total number of times the timing values
exceeded pre-defined warning and error
levels

•	 Longest message burst and maximum
message rate

•	 Number of SDO requests, responses and
aborts.

•	 Largest SDO block transfer size
•	 SDO minimum and maximum response

times
•	 Average PDO transmission rate
•	 Average time from reset to bootup
•	 Minimum and maximum heartbeat

periodic transmission times
•	 Number of heartbeat losses
•	 Identity information

Event detection

Along with generating numerical information
about the operation of a network an automated
system can apply intelligence to generate a
list of interesting events. A user is then able
to check the events and ensure there are no
anomalies. This approach can be taken a step
further and allow the list of events to be cross-
referenced with the message log, allowing the
context of the event to be determined.

Figure 4: Trace log showing message that
generated an event automatically indicated
with an event symbol

iCC 2017 CAN in Automation

07-10

Looking at the messages transmitted just
before an event provides a convenient way to
assess if this is a primary failure or a symptom
of an earlier failure.
Events can be categorized according to
interest level. Example categories could
include standard, important, unexpected and
error. A user would be able to use standard
events for context, and which primarily serve
to provide a “running commentary” on the
analysis of the log file.

Figure 5: Example analysis events

For a system that uses sleep and wakeup the
first expected message would be a wakeup
message. If something else appears first
then an unexpected system start event is
generated.
An unexpected PDO event would indicate
the transmission of a PDO before the node
generating the PDO has booted and entered
operational state. This could indicate a
missing bootup message or a missing
heartbeat message.

Examples of standard events:

•	 Time between NMT reset and node
bootup

•	 Emergency reset message transmitted
•	 LSS setting a node ID or bit timing or

activating a node
•	 First PDO from a node transmitted

Examples of important events:

•	 Pre-defined warning level reached
•	 Node bootup detected
•	 Missing emergency reset message
•	 NMT messages

Examples of unexpected events:

•	 Missing expected startup of network
•	 Heartbeat loss

•	 Failure to follow delays in wake/sleep
protocol

•	 PDO transmitted by a node that is not
known to be operational

•	 Invalid values for known object dictionary
entries

Examples of error events:

•	 Message transmitted when network is
sleeping

•	 Pre-defined error level reached
•	 Incorrect message length
•	 Emergency message transmitted
•	 Invalid NMT, LSS and SDO commands
•	 LSS and SDO protocol errors

Implementation

There are two main use-cases for an
automated analysis system. It can be used
on-site by a systems integrator or workshop
for example with a hand-held unit using “live”
data, or it could be used with previously
captured data in a PC application.
On-site with a hand-held unit provides instant
results for a smaller data set size. The user can
connect to the CAN bus, log messages, then
instantly see the results of analysis include
the events and numerical data. The sequence
can then be repeated. For analyzing the
network in a vehicle the hand-held unit can be
left connected while the vehicle is operated,
then retrieved and the results examined.
A PC application provides the opportunity for
larger data sets to be examined with more
detail provided. Log files with multi-millions
of messages can be handled and results of
the analysis can be exported for inclusion in
reports.
Figure three shows a possible way of
implementing such a dual-use system.

Figure 6: System architecture

iCC 2017 CAN in Automation

07-11

The hand-held unit has firmware running on
a microcontroller with CAN interface. During
live monitoring of the network the messages
are fed one at a time to the analysis module,
which is part of the firmware. The analysis
results continually update in real time.

Figure 7: Analysis events on hand-held unit

The figure shows an overview of the current
and maximum message rate, organized
by node identifier. Also shown is the
heartbeat status, SDO response times and
identification details.

Figure 8: Detailed analysis on hand-held unit

The detailed analysis mode shows additional
information, such as the range of heartbeat
producer times and the number of SDO
requests, aborts and sleep objections.

The PC application receives a pre-recorded
log file, which could be in a variety of common
file formats. The messages from the log are
fed one at a time to the analysis module and
the results are then presented to the user.
Key to this system is the commonality
employed. The analysis module is identical
for both systems, reusing code and reducing

implementation time. It also guarantees the
same analysis results for both systems, given
the same input data.

 Figure 9: PC pie chart of message types

Both implementations allow the configuration
of the overall system before analysis is started.
For example the device profile being used
is important to know in advance. In CiA447
sleep and wakeup cycles might need to be
analyzed, however in CiA301 those same
messages would be an error as they are not
defined. Acceptable timing requirements can
change from application to application. For
one application an SDO response time of
100ms may be acceptable, but for another
application and SDO response time of 30ms
may be a hard requirement.

 Figure 10: Example warning and error levels

The figure above shows an example of a
range of warning and error levels that can be
customized and applied to the analysis.

Case studies

11 099 messages were logged from a vehicle
CANopen network [4]. On analysis the
following errors were shown in the event list.

Figure 11: Events from analysis

	

	

iCC 2017 CAN in Automation

07-12

The emergency event log entry is directly
associated with a CAN message in the trace
log. We examined that message to learn
more.

Figure 12: Emergency message detail

This told us that node one (which was the
manager in this network) had detected a
heartbeat loss.
Using the trace log timestamps to scroll
backwards more than 250 ms we confirmed
there was no heartbeat transmission from
the missing node. In this case the 250 ms
period consisted of 23 messages. The
use of the event log allowed us to quickly
narrow down a problem area from over
11 000 messages to just 23. A significant
time saver.
The second error shown states “Last SDO
seq. incomplete”. We viewed the associated
CAN message in the trace log for clues.

Figure 13: SDO request message detail

This showed an SDO request from node
eight to node two. The error indicated that
a previous SDO request was not completed
at that point in time. Scrolling back five
messages in the trace log showed the
previous SDO message.

Figure 14: SDO request message detail

Clearly node eight already tried to access
a different entry on node two. No response
was received. Crucially node eight did
not transmit an abort message before
continuing. Looking at the timestamps we
saw that 50 ms passed between the two
SDO requests. We were able to easily
identify a problem with both nodes by
looking at just six messages in a large log
file.
From a different vehicle CANopen log file [5]
we viewed numerical information. For node
one a graph made it clear the performance
of heartbeat generation.

Figure 15: Heartbeat producer times
(measured)

For CiA447 the required heartbeat producer
time is 200 ms. We could see that this node
was performing outside of the requirements
and therefore would need further
investigation.
A similar graph showed the performance of
the SDO server on the same node.

Figure 16: SDO response times
(measured)

iCC 2017 CAN in Automation

07-13

A large number for the maximum response
time would indicate an issue, perhaps
high bus load or a firmware functionality
problem.

Conclusion

For complex, dynamic networks where there
is a large number of messages, node ID
assignment and timing inter-dependencies
automated analysis of network messages
is a useful tool. A suitable application
can quickly sort through and provide the
developer and systems integrator with a
range of information to assist in identifying
problems and confirming correct network
operation.
Less time spent on analyzing a network and
locating problems is more time that can be
spent on other activities.

References
[1]	 CiA DS 301, CANopen application layer and

communication profile
[2]	 CiA DSP 447, CANopen application profile for

special-purpose car add-on devices
[3]	 https://support.office.com/en-us/article/Excel-

specifications-and-limits-1672b34d-7043-
467e-8e27-269d656771c3

[4]	 21_Mar_2016_10_44_58_redacted.btr
[5]	 Test1_1st_start.csv

Andrew Ayre
Embedded Systems Academy, Inc.
1250 Oakmead Parkway, Suite 210
US-94085 Sunnyvale, CA
Tel.: +1-877-812-6393
Fax: +1-877-812-6382
aayre@esacademy.com
www.esacademy.com

