
iCC 2015 CAN in Automation

01-12

Advanced testing for highly dynamic CANopen 
systems such as CiA 447

Olaf Pfeiffer, Embedded Systems Academy GmbH, Chairman SiG CiA 447 car add-on devices

Highly dynamic systems supporting plug-and-play require more advanced testing 
methods both at the device level as well as at the integration level. This paper 
summarizes the tests available and used for CiA 447[4]. These are the CiA 447 version 
of the CANopen conformance test, an enhanced “Concise Device Configuration File” 
format, the CANopen Test Machine and an automated system event analyzer for the 
integration phase.
The “Concise Device Configuration File” format was conceived to support a simple 
method to configure a CANopen device. The CDCF is primarily a list of write accesses 
for an Object Dictionary. A CANopen device with a CANopen SDO client can easily 
process a CDCF by executing the SDO write accesses one by one. However, there is 
no interaction or flow control supported. The enhanced CDCF format by Embedded 
Systems Academy supports various commands including setting timeouts, reading 
back values for confirmation, transmitting the NMT master message and executing a 
LSS Master cycle. These commands support custom test sequences as well as complex 
bootloader control.
The CANopen Test Machine was jointly defined by Daimler and Embedded Systems 
Academy and supports creating and editing test graphs drawn in Microsoft Visio®. 
Although developed and optimized for the CiA 447 SiG it can be used with any CANopen 
device. The system supports complex test sequences using multiple timers, buffers and 
CAN messages. The tests are state diagram based and each transition can be based on 
a condition (check variable or timer) and contain an action (modifying variable or timer) 
and a CAN transmit or receive. The generated test files can be executed on various 
hardware platforms, which generate a log file containing the device ID of the DUT as 
well as a signature line.

CANopen systems using dynamic node IDs 
assigned through Layer Setting Services 
(LSS) with every power up are challenging 
to debug as Node ID numbers may change 
with every power cycle. In case of errors  
it is not immediately clear which physical 
device is at fault. In regards to test  
running on a network with multiple  
devices this means that at all stages  
of the test it must be clear “who is who” 
in the network. This paper summarizes 
the four test utilities currently in use for  
testing CiA 447 single devices or complete 
systems:

	 •	 (A) Enhanced cctt (CANopen 
conformance test tool)

	 •	 (B) Extended CDCF (Concise Device 
Configuration File)

	 •	 (C) CANopen Test Machine
	 •	 (D) Logxaminer CANopen Event 

Examiner

(A) Enhanced cctt

A CiA 447 device does not operate unless 
a CiA 447 gateway is present to wake up 
the device, assign it a node ID via LSS and 
keeping it alive by its presence. Without the 
gateway, a CiA 447 device would fall back into 
sleep mode.

CiA 447 device tests with the original CANopen 
Conformance Test Tool are only possible, if a 
gateway is present on the network at the same 
time. However, gateways do not only require 
additional simulations to operate, they also 
produce background traffic influencing the 
tests, like using SDO channels or NMT master 
messages at the same time as the test does.

Therefore the engineers of Embedded 
Systems Academy created a modified CiA 
447 version of the cctt that has the following 
changes implemented.



iCC 2015 CAN in Automation

01-13

	 1)	 Pre and post test sequence: each 
individual test executes a pre and a post 
sequence. The pre sequence wakes uo 
the CiA 447 device and assigns it a node 
ID via LSS. The post sequence sends 
the device back into sleep mode.

	 2)	 Keep alive function: a gateway heartbeat 
is produced as background function. 
This ensures that devices do not go 
back to sleep by themselves.

	 3)	 Extended SDO channels: in CiA 447 
each device implements 16 SDO 
channels (default CiA 301[1] plus 15 
CiA 447 defined channels). The CiA 447 
cctt version allows selecting the SDO 
channel used during tests.

	 4)	 Hiding not applicable tests: Some cctt 
tests cannot be applied to CiA 447 
devices. These are hidden from the 
user.

In summary these changes ensure that a CiA 
447 device can be tested “stand alone” by 
the cctt and that the pre-conditions for each 
individual test are the same.

(B) Extended CDCF

The “Concise Device Configuration File” is 
specified in CiA 302-3 [2]. In short, it is an array 
of records with the following contents:
	 •	 Index (type UNSIGNED16)
	 •	 Subindex (type UNSIGNED8)
	 •	 Length (type UNSIGNED32)
	 •	 Data (type DOMAIN – any length)

A CANopen Master or test utility can process 
this list and “execute” it as a sequence of SDO 
(Service Data Object) write accesses to a 
specific node, the device under test (DUT). In 
traditional CANopen systems, this file format 
can be used to configure a CANopen node, for 
example setting specific heartbeat and/or PDO 
(Process Data Object) transmission modes 
or event times. When specific sequences 
are required, then these sequences must be 
present in the CDCF (e.g. disable PDO, modify 
parameters, enable PDO).

Extended CDCF

As is, the CDCF is just a list of data for 
Object Dictionary entries. There is no 
timing information (how fast to execute the 

sequence) or device information (to identify 
if this file is for a specific device only) or 
flow control (only continue if the CANopen 
device has specific values at selected 
Object Dictionary entries).

There are no physical layer settings 
associated with a CDCF: CAN bitrate used, 
timeouts and delays for SDO transfers or the 
node ID of the device this file is intended for.

Figure1: Traditional CDFC usage

Custom sequences

In order to make the CDCF usable for 
customizable test sequences or device 
identification, commands need to be 
specified. Command extensions like file 
identification, version and comments allow 
an identification of a specific CDCF. CDCF 
player settings support setting of CAN 
bitrate, node ID, SDO timeouts and delays. 
Parameters like the number of retries on 
failures and logging options for debugging 
and test of the CDCF. Active Controls allow 
the definition of pauses or a wait for action 
of the selected device, such as a bootup 
message or an operational heartbeat. A 
command can also initiate the execution 
of a LSS Master Cycle or an NMT Master 
message. SDO read access with an optional 
comparison may be executed instead of a 
write access.



iCC 2015 CAN in Automation

01-14

Figure 2: Timeouts and delays

Figure 3: Match data to identify DUT

Command definition

To keep the new CDCF enhancements 
backward compatible, all new commands 
are “hidden” in the existing regular records 
with Object Dictionary entries. The extend 
commands defined stick to the existing 
record format. An Index value of 0F0Fh 
is used to identify enhanced commands. 
In CANopen this index value is currently 
reserved [1].

Whenever the device executing the records 
of a CDCF reaches a record with the Index 
0F0Fh, it does not immediately generate 
an SDO write but interprets the contents 
as an extended command to execute and 
processes it accordingly.

A CDCF executing device that is not 
capable of interpreting these commands 
will generate an SDO write to Index 0F0Fh 
which will result in an SDO Abort as 0F0Fh 
is a reserved value in the CANopen Object 
Dictionary.

Extended CDCF commands summary

A detailed definition of the CDCF commands 
does not fit into the scope of this paper. In 
short the commands defined are: 

	 1)	 Informational strings to identify the 
file and to add conditional outputs to 
a log file generated, allowing error 
messages to be added to log files. 
Strings can also be user requests, like 
asking the user to push a button at the 
device before continuing the test.

	 2)	 The player settings allow setting 
bitrate, timeouts and delays as well as 
retries and logging details.

	 3)	 Active control commands include 
delays/pauses, waiting for an action 
such as a device bootup message, 
sending a NMT command or executing 
a LSS master cycle.

	 4)	 SDO accesses may also be reads, 
reads with a comparison and writes 
may include writing back a value 
previously read.

Usage example: Identification of device

A CDCF can now be associated with a 
specific device or device class by matching 
up its Vendor ID, Product Code, Revision 
information or even serial number. Execution 
aborts, if the desired entries do not match. 
For both the test or bootloader sequences 
this ensures that a CDCF only gets 
executed on those devices it was generated 
for. A CDCF can be generated to only match 
and work with an individual device (match 
down to serial number) or any device from 
a series (match to vendor ID, product code 
and possibly revision number).

Usage example: Test sequences

Supporting user interactions allows end of 
production line testing for output devices 
such as roof bars for police cars as defined 



iCC 2015 CAN in Automation

01-15

by CiA 447[4]. After each switch of an 
output, a user interaction like “verify if light 
xyz is now on” can be displayed on the 
CDCF player. The person running the test 
can now manually trigger execution of the 
next sequence by pushing a button/dial on 
the CDCF player.

Usage example: Boot loading

A CDCF can now contain all data and 
commands for boot loading a specific 
device. First a match verifies that this is the 
correct device, then the bootloader gets 
activated and last the sequence is executed 
to re-program/flash the firmware in the target 
device. This allows sending an “end user” 
device specific firmware update files that 
cannot accidently be programmed into the 
wrong device as it can be associated to the 
specific device the user has in his system.

File generation and editing

Embedded Systems Academy provides 
a converter utility program that allows 
generating a CDCF from a comma 
separated value file as creatable with any 
spread sheet program such as Microsoft 
Excel. It simply contains the columns Index, 
Subindex and Data, the length information 
gets automatically calculated and inserted. If 
the data is too big to fit into the data column, 
the entry can also refer to a file that later 
gets inserted as data for this entry.

(C) CANopen test machine

Real-world test examples have shown that 
timings, timeouts and behavior under stress 
are major factors for interoperability of 
CANopen devices. Unfortunately, these are 
only checked on a very basic level – or not 
at all – by the CANopen Conformance Test 
(cct) of the CiA. The CANopen Test Machine 
provides a framework for customized tests 
with strict real-time and application-profile-
specific requirements.

The CANopen Test Machine allows the 
creation of tests based on Microsoft Visio® 
graphs, provided macros then auto-generate 
a test script from the graph. It is a real-time 
capable test system intended for the test 

of CANopen devices. Originally developed 
for testing CiA 447 application profile 
compatible devices, it can also be used for 
CANopen devices implementing any other 
CANopen device or application profile.

CANopen test machine basics

The individual tests are based on a state 
machine with transition rules triggered by 
the transmission or reception of a CAN 
message and conditions that include timers 
and counters. Each individual transition 
rule can contribute towards a test result by 
specifying if this transition should add to the 
fail counter. 

 
Figure 4: Test state transitions

Predefined “smart modes” allow the CAN 
IDs used in rules to be modified during run-
time, for example to include the node ID of 
the current device-under-test (DUT). Smart 
modes may also execute autonomous, 
predefined, complex sequences, such as 
the LSS Master cycle to detect a node and 
assign a node ID.

Any single test is automatically monitored 
with a general test timeout. This ensures 
that the test always terminates and cannot 
execute indefinitely. The result of each test 
must be either a “pass” or a “fail”. If the 
global timeout has expired before the test 
terminates regularly, the test is assigned a 
“failed” result.

For each instance of a test run, a log is 
generated that lists all applied transition 



iCC 2015 CAN in Automation

01-16

rules. The result is a listing of the steps 
taken and the result of each step (pass or 
fail).

The test engine can be executed on various 
hardware platforms. The main difference 
between the platforms is the real-time 
capability that a platform can provide. 
Some might allow timings generated and 
verified down to Milliseconds and below, 
others might only be capable of handling 
tens of Milliseconds. Tests may specify 
that a minimal timing resolution is required 
to execute a test. If the test hardware is 
not capable of that resolution, it denies 
execution of the test. 

Figure 5: Example - heartbeat testing

The example shown in figure 5 verifies if 
a 200ms heartbeat timing occurs in a time 
window from 180ms to 220ms. With each 
receipt of the heartbeat, timer 1 is restarted. 
When it reaches 180ms, a 40ms time 
window opens to receive the next heartbeat. 
With each receipt variable 2 is incremented, 
the tests ends after 100 cycles.

Test Machine timers

All timings and timers are defined in 
Microseconds. It depends on the platform 
that executes the test engine which real-
time capability is provided. A PC based test 
engine might be able to monitor the reception 
of CAN messages with a resolution of a 

few Microseconds. However, on PC based 
systems controlled transmission is typically 
only available with a large jitter (multiple 
tens of Milliseconds) depending on the 
performance of the PC and other programs 
running at the same time. The test engine 
on the CANopen Diag hardware offers 
controlled transmissions with a resolution of 
one Millisecond and reception timestamps 
with a one Microsecond resolution.

Test Machine variables 

For the flow control of the tests, variables 
can be used. The data types available for 
the variables are BOOLEAN, UNSIGNED32 
or TIME. The variables are numbered from 1 
to the number of variables supported by the 
hardware executing the tests. The functions 
to change variables are limited to:
	 •	 BOOLEAN: set to TRUE, set to FALSE 

or TOGGLE
	 •	 UNSIGNED32: set to a value, add a 

value or subtract a value
	 •	 TIME: reset and start (as one function) 

or stop

The condition checks available for each 
variable are:
	 •	 BOOLEAN: is it TRUE or FALSE?
	 •	 UNSIGNED32: is content “equal to  

a value”, is it “>= then a value” or is  
it “< then a value”?

	 •	 TIME: is time expired?

State transition rules

There are multiple rules defined for 
state transitions. Every rule may have a 
precondition check using a single variable 
or timer and every rule may set/change a 
variable. This allows executing a rule only 
when a variable based precondition is met.

Each rule may influence the action to be 
taken in regards to the test log (pass, fail) and 
in regards to modifying the timer/counters. 
For CAN receive rules and time rules, there 
is also an “any state”. Rules of this virtual 
state are continuously processed in any 
state. This allows specifying background 
messages that could be received in any 
state or a global timer/counter that is always 
checked.



iCC 2015 CAN in Automation

01-17

Summary of the CAN transmit rule

	 •	 If precondition is met (single variable 
check) AND current state matches

	 •	 Then transmit the specified CAN 
message

			   °	 Data may come from a buffer
	 •	 If a timestamp is specified with the 

CAN message, then this delay is 
added BEFORE sending the message

	 •	 Add action log for test result
	 •	 Perform variable action (influence a 

single variable)
	 •	 Go to next state as defined by rule

Summary of the CAN receive rule

	 •	 If precondition is met (single variable 
check) and current state matches

	 •	 Take next CAN message from receive 
queue and check for match

			   °	 Match pattern supported to define  
		  ranges or “don’t care” values

			   °	 Data received can be copied to a  
		  buffer

	 •	 Add action log for test result (PASS, 
FAIL)

	 •	 Perform variable action (influence a 
single variable)

	 •	 Go to next state as defined by rule

Summary of the variable/timer rule

	 •	 If precondition is met (single variable 
check) and current state matches

	 •	 Add action log for test result (IDLE, 
PASS, FAIL)

	 •	 Perform variable action (influence a 
single variable)

	 •	 Go to next state as defined by rule

File conversions

Using macros, the drawn test graphs can be 
converted into transition rule tables for the 
CANopen Test Machine player. In addition 
a pseudo-code script is auto generated 
listing all the test states with all the possible 
state transition rules. This ensures double 
documentation: besides the graph that 
already documents the test the user also 
gets a readable test script. The script 
below belongs to an alternative heartbeat 
verification test.

File generated by ESAcademy‘s CANopen Test Machine Validator
Version 1.00.2754 of 13-JUN-2013

File name: CiA447_HBtime_V102.esat
Full name: CiA447 heartbeat timing
  Version: V01.02 of 31-MAR-2013
DUTnodeID: loop from 2 to 16
Functions: LSS_Master Smart_ID CiA_447_ID use_post_seqence 
Resources: 2 timers, 0 buffers, 1000us timer resolution
  Timeout: 15.000s
Descript.: Check if HB between 190-210, do for pre-op, 
operational, try with all node IDs

State START:
  ON TRANSMIT {0000h,2,81h,00h,00h,00h,00h,00h,00h,00h}
    LOG: „NMT Master: Reset all nodes“
    GOTO State 1010h

State 1010h: „Wait for boot up of device“
  ON  RECEIVE {0700h, 1,00h,00h,00h,00h,00h,00h,00h,00h}
    AND MATCH {ffffh,fh,00h,00h,00h,00h,00h,00h,00h,00h}
              (Smart CAN ID based on DUT)
    LOG: „Node bootup“
    GOTO State 1011h

State 1011h: „Write to OD 1017h,0 of 200“
  ON TRANSMIT {0600h,8,2bh,17h,10h,00h,C8h,00h,00h,00h}
              (Smart CAN ID based on DUT)
    LOG: „Set heartbeat time to 200ms“
    START Timer[01h]
    GOTO State 1012h

State 1012h:
  ON  RECEIVE {0580h, 8,60h,17h,10h,00h,00h,00h,00h,00h}
    AND MATCH {ffffh,fh,ffh,ffh,ffh,ffh,ffh,ffh,ffh,ffh}
              (Smart CAN ID based on DUT, client 1)
    LOG: „1017h write response“
    FREE Timer[01h]
    GOTO State 2010h
  ON Timer[01h] >= TIME_MS[50d]
    LOG: „SDO timeout after write 1017h“
    GOTO State FAIL 

State 2010h:
  START Timer[01h]
    LOG: „Start new HB timer interval“
    GOTO State 3020h

State 3020h:
  ON Timer[01h] >= TIME_MS[190d]
    LOG: „PASS on no early heartbeat“
    GOTO State 3021h
  ON RxCounter[02h] >= 10
    LOG: „Pass on 10 cycles“
    GOTO State PASS „Completed Test Cycle“

State 3021h:
  START Timer[01h]
    LOG: „time window for heartbeat receive opens“
    GOTO State 3022h

State 3022h:
  ON  RECEIVE {0700h, 1,7fh,00h,00h,00h,00h,00h,00h,00h}
    AND MATCH {ffffh,fh,ffh,00h,00h,00h,00h,00h,00h,00h}
              (Smart CAN ID based on DUT)
    LOG: „Next heartbeat received“
    INCrement RxCounter[02h]
    GOTO State 301fh „Continous HB monitoring“
  ON Timer[01h] >= TIME_MS[20d]
    LOG: „FAIL on heartbeat not received in time window“
    GOTO State FAIL 

State 301fh: „Continous HB monitoring“
  START Timer[01h]
    LOG: „Start new HB timer interval“
    GOTO State 3020h

Executing tests and logging results

When CANopen Test Machine tests 
are executed, the CANopen test player 
generates a log file with all state transitions 
executed. This log file summarizes if a 
test passed or at which transitions failures 
happened. Depending on player settings 
these can have different level of detail, 
including optional debug information. The 
log files have a digital signature in order to 
protect them from accidental modification.



iCC 2015 CAN in Automation

01-18

CiA 447 gateway testing

In general, tests implemented based on the 
CANopen Test Machine operate directly on 
the DUT with no other devices connected. 
However, in order to test a CiA 447 gateway, 
an additional tester device as specified in  
CiA 447 [4] must be present. The test 
machine test can then send commands 
to the tester device to produce directed or  
non-directed background traffic of a 
specified load.

(D) Logxaminer event examiner

All tests listed so far are primarily intended 
for direct use with a single DUT. For final 
integration where multiple devices are 
present on the network, additional, non-
intrusive methods are required for testing.

The Logxaminer by Embedded Systems 
Academy is a system event analyzer and 
implements diagnostics methods used 
for live monitoring of dynamic systems as 
well as automated post analysis based on 
long-term trace recordings. The diagnostic 
methods described help to quickly pinpoint 
potential problems in a highly dynamic 
CANopen system.

The focus of the utility lies on identifying 
system relevant behavior, such as LSS 
node ID assignment (including identification 
so that it is clear “who is who” in current 
network), bootups, emergencies, monitoring 
various known sequences and identifying 
potential duplicate node ID scenarios.

For each live recording or log analysis an 
“event log” is generated showing these main 
system events and highlighting potential 
erroneous behavior.

Summary and outlook

The test tools addressed in this paper 
provide advanced testing methods for 
highly dynamic CANopen systems. Both 
the extended CDCF format as well as the 
CANopen Test Machine allow the generation 
of custom tests also for application profiles 
defining custom CANopen behavior and 
functionality.

For the CiA 447 group the next steps are to 
further define the individual tests in the test 
plan CiA 312[5]. This test plan is currently 
under development.

Olaf Pfeiffer
Embedded Systems Academy GmbH
Bahnhofstr. 17
DE-30890 Barsinghausen
Tel.: +49 5105 582 7897
opfeiffer@esacademy.de
www.esacademy.de

References
[1]	 CiA 301, CANopen application layer and 

communication profile
[2]	 CiA 302-3, Additional application layer 

functions, configuration and program 
download 

[3]	 CiA 305, Layer Setting Services (LSS) and 
protocols

[4]	 CiA 447, car add-on devices
[5]	 CiA 312-5, Test plan car add-on devices


