
iCC 2013 CAN in Automation

 04-8

How to use high bit-rates in a CAN-system

Kent Lennartsson and Jonas Olsson, Kvaser AB

The use of higher bit-rates is not difficult to implement into modern microcontrollers.
Even the smallest microcontrollers can handle clock-speeds in the 50 MHz range;
enough to run CAN-FD bus at 10 Mbit/s. Also, the smallest MCU on the market today
offer a 32-bit core with 32 kByte Flash and 8 kByte SRAM, as well as a great number of
peripheral circuits. Compared to the overall chip size, the CAN-controller represents
just 1% of the total area, with the result that the move from a classic CAN-controller to
a CAN-FD version will increase the total chip area by just 0.5%.
More challenging for the industry is how to handle the physical layer and in particular,
the cable layout. CAN’s strength is its robustness, but this means that it can be
forgiving of less than ideal CAN configurations. In most cases a correct bit-length and
some resistance between the two wires is enough to make the CN communication
work, because as long as the value at the sampling point is correct the CAN-frame is
accepted. When the noisy edge comes close to the sample point, CAN is less
forgiving. If you need higher bandwidth, the only solution is to increase the bit-rate
and learn how to handle the short bits without any problem. The laws of physics are
the same for CAN-FD, FlexRay, Ethernet etc., so that if a cable works with one of the
above protocols, it will work for all others at the same bit-rate.

The CAN FD Hardware

CAN FD merely represents some
additional logic to a standard CAN-
controller. The challenge lies in the higher
bit-rate, which demands faster clocking
from the bit handling logic. Our design is
implemented in a Cyclone 4 FPGA from
Altera which clocks at 80 MHz. We need at
least one clock per Time Quanta to handle
the bits. Theoretically, it will be possible to
run CAN-FD at 20 Mbit/s, which is far
beyond what is possible with the CAN-
drives available today.

Figure 1: Four channel CAN FD on a
PCI-express board

The bus-structure and the cable layout
make it very hard to reach such levels,
even if CAN-drivers become available that
can handle such bit-rates. Whit this
knowledge it is clear that the CAN
controller logic will never limit the speed of
the CAN FD, rather the limiting factor will
always be at the physical layer The actual
hardware with 4 CAN FD-channels is
shown in figure 1 running in a Linux
computer.
In figure 2, a block diagram shows one of
four CAN-channels. This hardware is
optimized for a PC-computer interface
where 100% of the messages needs to be
received and transferred to the processing
application.

Figure 2: Block view over one of the four
CAN FD channels
To reduce the delay over the PCI-express
link, a DMA is used to transfer data directly

iCC 2013 CAN in Automation

04-9

Figure 3: The bit-logic block

from the CAN-controller FIFO to the PC-
memory. In most cases, the FIFO is empty
and the only reason there is anything in
the FIFO is due to a delay caused by Linux
performing more important tasks.

The CAN to CAN-FD step

At the block level (see Figure 2) there is
almost no difference to be seen between
Classic-CAN messages and a CAN FD
message. If you restrict CAN FD to handle
0 to 8 byte of data, just two bits need to be
added to the CAN message, FDF and
BRS, indicating a request to send the
package in FD format and if required, at a
higher bit-rate. The FDF bit is used to
indicate whether the message will be sent
as Classic-CAN or CAN FD. The BRS bit
is used to indicate a use of higher bit-rate
in the CAN FD frame. It is possible to send
0-8 byte data in a CAN FD frame without
increasing the bit-rate. The advantage of
this compared to Classic-CAN is the use
of the more protective CRC-17 (a cyclic
redundancy check code) in place of the
CRC-15 used in Classic-CAN.

To handle CAN-frames with more than 8
bytes will demand a new layout of the
CAN-buffers to fit up to 64 byte of data.
The problem of extending the buffer size is
not covered in this paper.

The logic behind CAN FD

Figure 3 shows the logic that takes the
selected message buffer and places it on
the bus during a transmit request or
receives the CAN-messages from the bus
and hands it over for storage in a buffer.
This logic includes the functions necessary
to handle both Classic CAN and CAN FD
frames. Two dedicated sub blocks have
been added to the bit-logic to handle CAN
FD text. The rest of the logic is common to
both Classic CAN and CAN FD. This logic
needs to be active all the time, according
to the CAN-protocol i.e. from the ‘bus-on’
command until the ‘bus-off’ command,
which turns communication off. Figure 3
shows a simplified data flow. There are a
great number of control signals to handle
the logic under different conditions.

iCC 2013 CAN in Automation

04-10

Figure 4: Classic-CAN compared with CAN-FD with one byte and 5 time faster bit-rate

Figur 5: The bits that control the different CAN-FD functions

Also, the Error handling logic is left out of
the picture to simplify the description.
The receiving path is not as complex as
the transmit path. The receive path is the
red line (the lines with arrows pointing to
the left). The input from the CAN-driver is
in the right lower corner of the figure
“TX/RX Sync”. This interface will detect if
there is a recessive to dominant edge that
indicates the start of a CAN-Frame, SOF-
bit. This sets the bit-timing logic in motion,
which samples the bit-stream according to
the programmed configuration of the bit
from the bus.
The received bit is passed directly to CRC-
17 and CRC-21. However, the received bit
passes through de-stuffing before it
reaches the CRC-15, which is one of the
major differences between Classic-CAN
and CAN FD. By including the stuff-bits in
the CRC-calculation you will get better
protection against certain combinations of
bit-errors in data-bits and any stuff-bits not
included in the CRC-calculation.
The de-stuffed bits are sent to the “CAN
Handler” where the bits are collected and
assembled into a complete message. The
CAN handler will also check some control
bits in the data-stream, which indicate the
different types of CAN-frames to process.
Classic-CAN has 4 types of messages all
with CRC-15 and with nominal bit-rate.

1. 11-bit ID with 0-8 byte of data.
2. 11-bit ID with Remote Request.
3. 29-bit ID with 0-8 byte of data.
4. 29-bit ID with Remote Request.

Depending of the detected message type,
it is necessary to adjust the assembly of
the bits in the CAN handler before it is
transferred into the CAN-buffer.
The picture is made a little more complex
when CAN FD is introduced into the
control logic. For CAN FD, it is not enough
to handle the bits differently in the CAN
Handler, because the bit-handling shown
in figure 1 also needs to be modified.
CAN FD does not support Remote request
but there are other CAN frame types that
need to be handled. The following CAN FD
message formats have to be handled in
different ways in the CAN Handler and in
bit-logic.

1. 11-bit ID with 0-8,12,16 byte of data
CRC-17 with nominal bit-rate

2. 11-bit ID with 0-8,12,16 byte of data
CRC-17 with data bit-rate.

3. 11-bit ID with 20,24,32,48,64 byte of
data CRC-21 with nominal bit-rate

4. 11-bit ID with 20,24,32,48,64 byte of
data CRC-21 with data bit-rate.

5. 29-bit ID with 0-8,12,16 byte of data
CRC-17 with nominal bit-rate

6. 29-bit ID with 0-8,12,16 byte of data
CRC-17 with data bit-rate.

7. 29-bit ID with 20,24,32,48,64 byte of
data CRC-21 with nominal bit-rate

8. 29-bit ID with 20,24,32,48,64 byte of
data CRC-21 with data bit-rate.

Even if the handling of the 8 different
formats is very similar, it is necessary to
modify the logic (shown in Figure 4) to
correctly receive CAN FD frames.

iCC 2013 CAN in Automation

04-11

Figure 4 compares a Classic-CAN and
CAN FD message with one byte payload
where the data-rate is 5 times the nominal
bit-rate. As can be seen in the figure, the
CAN FD frame is much shorter because
data as well as DLC and CRC are sent at
the higher bit-rate. The CAN Handler will
process the bits one by one in the same
way independent of the used bit-rate. The
only demand is that the logic is fast
enough to process one bit before the next
is received.

Reception of a CAN FD frame

Figure 5 is a view of the bits that changes
the interpretation of the received bits when
CAN FD is included in the CAN-standard.
The first bit that involves CAN FD is the
FDF-bit “Flexible Data Format” and at this
point we already know if the CAN-
message is 11 or 29 bit ID. Also the RTR-
bit has been resolved in Classic-CAN. At
this point of the message it could either be
a Classic-CAN frame with 0-8 byte or one
of 4 CAN FD formats. The Classic-CAN
format is indicated by a dominant FDF-bit
and in that case there will be no change
needed in the logic in figure 3.
If the FDF-bit is recessive the CAN format
will be one of four possible types. In the
FD format, CRC-15 is not used and can be
disabled. In Classic-CAN, DLC follows the
FDF-bit but in CAN FD, three more bits are
included before DLC is reached. The first
bit is R0-bit, which is reserved for future
use to indicate the protocol that will come
after CAN FD. For the CAN FD protocol
this bit will always be dominant.
The next bit is the BRS-bit, “Bit Rate
Switch”. If this bit is dominant, the
communication will retain the nominal bit-
rate through the rest of the message. This
condition will not change anything in the
figure 3 logic. If this bit is sampled as
recessive it indicates that the rest of the
bits will be sent at the higher data bit-rate.
To handle the higher bit-rate it is
necessary to change the sample clock to
sample at this higher rate. Also, the edge
detector need to switch to a clock that
matches the shorter TQ “Time Quanta”
used at the higher data bit-rate.

The rest of the logic will continue to work
in the same way, except at a higher clock
rate.
The next bit is the ESI-bit, “Error Status
Indicator”, which is normally dominant but
will be sent recessive when the sender is
Error-Passive (the module has a major
communication problem). This bit does not
change anything in the control logic, but
could be used for higher layer fault
handling or diagnostic functions. The
Error-Passive status is an internal
condition in the CAN-controller and the
sending CAN-controller can send this
information without any support from host
software.
The ESI-bit is the first high speed bit and
is followed by the 4-bit DLC pattern. The
table below shows the possible number of
data bytes supported by Classic-CAN and
CAN-FD. The CAN handler has to convert
the DLC into a number of bytes that need
to be received in this particular message.
It is also necessary to select which CRC
will be used - CRC-17 or CRC-21 - at the
end of the message, so that it can be
compared with the CRC received from the
sender of the CAN-message. When the
last bit in the DLC is received, it is 100%
clear how to handle every bit in this
particular CAN message.

Table 1: DLC coding
DLC CAN

Bytes
CAN-FD
Bytes

CAN-FD
CRC-

0-8 0-8 0-8 17

9 8 12 17

10 8 16 17

11 8 20 21

12 8 24 21

13 8 32 21

14 8 48 21

15 8 64 21

The last task for the CAN-handler when all
data-bits have been received is to start the
CRC-checking. This task is performed
differently in Classic-CAN and CAN FD.
To secure resynchronization, CAN FD
uses fixed stuffing in the CRC-sequence
where every 5th bit is followed by a bit
value inverted by the previous bit value.

iCC 2013 CAN in Automation

04-12

This secures a recessive to dominant
edge within at least 10 bits. When a
CAN FD frame reaches the CRC, the
CRC-bits are redirected to CRC de-
stuffing before the received CRC-bits are
compared to the internal calculated CRC-
sequence. Whether CRC-17 or CRC-21 is
used depends on the number of data-
bytes received. If the number of bytes is
16 or less, CRC-17 is used and if the
number of bytes is more than 16 then
CRC-21 is used.

Transmission of a CAN-FD frame

The main difference during transmission is
the bit-error checking, when the sender
must check that the transmitted bit is
reflected with the correct value on the bus-
line.
When a bit is transmitted it will take some
time before the next bit has passed
through the electronics out to the bus line
and back again. This delay for Classic-
CAN devices are in the range 50 to 300 ns
“nano seconds” and this could fit into the
typical nominal bits that is not shorter than
1000 ns. This make the logic for the
nominal bit very simple because the
transmitted bit is still valid when the bus is
sampled and a direct compare can be
used (shown in Figure 3 with the box
CMP).

Figure 6: at the higher bit-rate it is
necessary to include a delayed compare

As shown in figure 6 can in CAN FD this
delay be longer than the length of high
speed bits and a direct compare is not
possible.

The logic has to store the sent value and
compare this value when this bit have
been received back from the CAN-line.
The more complex solution that’s
necessary for CAN FD is shown in Figure
6. The delay between the bit sent and the
bit value received is measured at the EDL
to R0 edge. This measured time is used as
a delay in the SSP-block “Secondary
Sample Point” in figure 3. The bit-value
sent is saved and after the delay is
compared with the value sampled from the
CAN-bus. This delay is normally 1 or 2 bits
but our design can handle up to 8 bits.
The CAN handler also needs to select
correct stuffing, CRC and bit-rate
depending on the configuration of the
CAN-buffer.

CAN-FD with Classic-CAN

One major problem with CAN FD is the
redefinition of the Classic-CAN R1-bit into
the FDF-bit. No Classic-CAN controller will
accept CAN FD frames until the CAN
controller has been modified according to
the next ISO-11898-1 standard. In Classic-
CAN, the FDF-bit is received as either
dominant or recessive and both values
should be accepted. This is problematic for
Classic-CAN because in it, the DLC is
defined in the following four bits, rather
than the new bits defined in CAN FD.
Sooner or later, Classic-CAN will consider
that the CAN FD frame has violated the
CAN protocol. To solve this problem it is
suggested that a redefinition of the FDF-bit
is implemented in Classic-CAN where
Classic-CAN controllers will ignore all bits
following the recessive FDF-bit and
reestablish communication when the CAN-
FD frame has ended. The end of any CAN
message is a sequence of 11 recessive
bits. However, just sampling the bus at a
nominal rate is not enough in order to find
this sequence correctly. With such a
simple solution there is a risk that this
sequence could be found when sampling
within the CAN FD frame before the EOF
“End Of Frame” section. As of September
2013, no final solution has been specified
as to how this will be implemented.

iCC 2013 CAN in Automation

04-13

Figur 7: The bits that control the different CAN-FD functions

Enhanced CAN-format

During the development of the CAN FD
controller, we had to analyze the CAN-bits
in detail to secure our behavior on the bus.
During this work we found that Classic-
CAN is very insensitive to noise within the
bit and that it will accept noise in the bit, as
long as you receive the correct value at
the sampling point. To understand how
this works, we have to study the definition
of a nominal bit, as shown in figure 7. In
Classic-CAN, the CAN-controller looks for
recessive to dominant edges that are used
to adjust the sampling point in relation to
this edge. When the CAN-bus is idle, this
edge causes a hard synchronization of the
sampling and the sampling is performed at
11 TQ from this edge, with a bit-
configuration as shown in figure 7.

Figure 8: the nominal bit definition

In the rest of the message, the Stuff-bits
ensure that there will be at least one such
recessive to dominant edge every 10-bit to
readjust the sampling point. If the receiver
clock is running too slow or too fast, it
must be ensured that the sampling point
hasn’t moved by more than 3 TQ (shown
in green, in figure 7). When the dominant
edge is detected, the bit is adjusted by the
number of TQ, as configured in the SJW
“Synch Jump Width” register.

If the edges are 2 TQ too early (in Phase
segment 2), this segment will be 2 TQ
shorter in this bit. If the edges are 2 TQ
late (in the propagation segment) then
Phase segment 1 will be 2 TQ longer in
the following bit time. All other edges will
be ignored and considered as noise.
With this knowledge, it was possible to put
high-speed data in the propagation
segment that would be treated as noise by
Classic-CAN controllers but could be
received and collected by other controllers
with the means to interpret the additional
information. This solution is just an
extension of Classic-CAN that effectively
increases data-rate without making any
changes to the Classic CAN-controller
hardware. It is even forward compatible
with CAN FD because the CAN FD
controller will interpret this as a Classic-
CAN frame with a noise problem that will
be filtered away by the robust CAN-
protocol. The name given to this solution is
CAN-EF “Enhanced Format”

CAN-EF performance

It is clear that CAN-EF will not be as
efficient as CAN-FD because the CAN-EF
protocol needs to use a large number of
TQ to protect the Classic-CAN sampling
point. The simplest solution is to just add
one extra bit in the propagation segment,
which shouldn’t be problematic when
running below 1 Mbit/s. One bit may seem
marginal, but it still represents an increase
of almost 100% in the CAN-EF
communication – effectively, you double
the performance at no cost. In this case,
the performance is not too far removed
from CAN-FD, with a data-rate twice the
nominal-rate, except with a CRC that is
twice as long in CAN-EF as that of
CAN FD.

iCC 2013 CAN in Automation

04-14

CAN-EF will also need some overhead bits
that will limit the number of extra bytes to
less than double.
Another example is a bus running at 250
kBit/s with a bit as described in figure 7. In
this case, the propagation segment is 7 TQ
(62,5 ns) 437,5 ns long and if we put
3 bits in this part, it will result in a CAN-EF
bit-rate of less than 2 Mbit/s. With this
solution you can increase the CAN-EF data-
rate by 4 times, but still running the Classic-
CAN unmodified at 250 kBit/s. The
arbitration is a pretty complicated condition
and if the system can handle that event at
250 kBit/s, it will most probably be possible
to send data at 1 Mbit/s. To increase the
nominal bit-rate beyond 250 kBit/s may be
impossible due to cable length. If you can
run CAN-EF at 2 Mbit/s, it is also possible to
run CAN FD at this bit-rate. The propagation
segment does not limit CAN FD and in this
case, the data-rate is almost twice CAN-
EF’s performance. The justification for using
CAN-EF is its ability to use already available
modules that are not compatible with
CAN FD. With CAN-EF it will be possible to
increase the data-rate at least 4 times for
every module that is replaced with CAN-EF.
When all modules are replaced it will be
possible to make the next performance step
by enabling CAN FD and make a last
doubling of performance. Of course, is it not
necessary to make one big step from 250
kBit/s to 2 Mbit/s. It could be done in smaller
steps where you slowly adopt a higher bit-
rate and possibly adjust filters and cable
layout to handle an increased bit-rate,
gradually. By this point, you will be well
prepared for the final step to CAN FD when
all modules are replaced with CAN FD
functionality.
The rule of thumb is that the space for CAN-
EF bits is between 40 and 80% of the
nominal bit. The lower value, 40%, is when
there is a big variation in clock speed and a
very short propagation segment. How many
CAN-EF bits fit into the propagation
segment depends on how high a bit-rate
your CAN-driver and cable layout can
handle.

The CAN-EF limitation

The major challenge to using CAN-EF is
CAN’s inherent robustness. Its robustness
makes it possible to get a working system

with almost any setting of the sample point
and SJW, as long as the bit-length is
correct. This has resulted in a system with
modules that can have almost any bit
configuration. All will work well as long as
there is
not too much noise or other disturbance in
the system. However, as soon as you
have poor cabling or electrical noise, you
can expect to encounter problems that will
be hard to find because they are hidden in
the bit-handling, internal to the different
CAN-controllers connected to the CAN-
bus. For Classic-CAN controllers, the
CAN-EF communication is just noise even
if the noise is generated by the CAN-EF
protocol. If Classic-CAN does not have the
correct bit or clock settings outside the
specification, problems will occur when too
much of the propagation segment is used
with CAN-EF bits. In other words CAN-EF
communication is a perfect tool to check
how robust your Classic-CAN network is
against disturbance.
To use CAN-EF efficiently, it is necessary
to ensure that there are optimal settings in
all Classic-CAN modules. This ensures a
more robust Classic-CAN system and a
maximum number of bits in the CAN-EF
frames at the same time.
It will of course be possible to measure
how much of the propagation segment is
available for CAN-EF and only utilize that
for that purpose, but that will leave the rest
of the CAN-system as weak as it was
without CAN-EF.
As with all CAN-systems, one module with
a bad bit-timing setting or bad clock is
enough to compromise the performance of
the system. It is the weakest link in the
chain that sets the limitation of the entire
system.

Figure 9: 250 kBit/s nominal bits with
10 EF bits at 4 MBit/s in the propagation
segment

iCC 2013 CAN in Automation

04-15

Figure 8 is an oscilloscope snapshot where
the CAN-EF frame has been sent over 42
meter twisted pair with an impedance of 100
Ohm and with a 120 Ohm resistor at each
end of the cable.

The physical layer

When increasing the bit-rate the mayor
problem will be the cable layout. To make a
high speed transmission line is basically
very simple because the only demand is to
keep the same impedance from the source
of the signal to the receiver. The actual
impedance can have any value and if you
take two typical wires used in a car and
twist them you will get 120 Ohm and if the
wires are thinner like in an EtherNet CAT5
cable you will get 100 Ohm. Any of them
can be used for the CAN-bus, but you will
get problem if you mix them in the same
bus-line. Even if you manage to use the
very same cable in the CAN-bus it will be
necessary to end the cable in a connector
that fits to the CAN-module. Even if the
RJ45 connector, used for a standard
EtherNet cables at 10/100/1000 Mbit/s,
looks simple it is carefully designed to keep
the 100 Ohm impedance when connected
to your computer or hub. In CAN and CAN-
FD it is little simpler, because there is a
relation between the bit-rate and how much
impedance miss-match that can be
accepted without disturbing the signal.
The right most column, in table 2, is a rough
estimation how much of your CAN-bus
cable that can be of different type with
different impedance. A drop line could be
compared with replacing a segment of the
cable with cable segment with the same
length and with 50% of the impedance
value.

Table 2: Relation between

Bit-rate

(Mbit/s)

Bit-
length
(ns)

rise-
fall
time
(ns)

Rise
length

(m)

Acceptable
impedance
miss-match
length (m)

1000 1 0.1 0.02 0.01

100 10 1 0.2 0.1

10 100 10 2 1

1 1000 50 10 5

0.5 2000 100 20 10

0.125 8000 400 80 40

The physics is the same as sound waves
passing through an iron bar connected to
an aluminum bar where some of the wave
will bounce back at the change in material.
If you have a cable with the same
impedance it will continue forever, but for
every miss match will you get some
reflections and the amount of reflections
will depend on the scale of the miss-
match. Even if the miss-match is small
they will all add up and make the signal to
disturbed to be useful.
As can be seen from the table it is
necessary to keep the impedance miss-
match in EtherNet within centimeters
compared to meters for a typical Classic-
CAN. When we increase the bit-rate we
will be more and more sensitive to
impedance miss-match in the bus layout. If
you have several drop lines or cable
segments with different impedance, you
have to add them all together and check
that they are less than the value in the
rightmost column to know that they will not
give problem in the communication.
Classic-CAN is very insensitive and it will
be possible to have much larger numbers
compared to the table above before there
are Error-frames in the communication.
This can be observed by connecting an
oscilloscope to the CAN-bus and if you
see a signal with a lot of ringing and
disturbed edges then you have impedance
miss-match in the bus-layout.

iCC 2013 CAN in Automation

04-16

Twisted wires

To get constant impedance in a CAN-bus
it is not necessary to twist the two wires
CANH and CANL, but there are three
reasons to twist the two wires. The first
two are to protect the communication wire
for electromagnetic radiation. If the two
wires are kept together within say 1 mm. It
will be necessary to have an electrical field
at 1000 Volt/meter to get a 1 Volt
difference between CANH and CAN-low
and that is not enough to make any
problem in a CAN-communication. The
second reason is for magnetic field
protection. A magnetic field will induce a
current in the CAN-wires and the amount
of induced current depends on the
strength of the magnetic field multiplied
with the area between the two wires. First
of all will the twist reduce the exposed
area and secondly will the twist change the
polarity of the magnetic field and by that
reverse the induced current in every pair of
twist. This is the two reasons why
differential CAN-communication is so
much more robust compared to K-line, LIN
and SWC (Single Wire CAN) even at low
bit-rates.
At higher bit-rate there is a third reason to
have a twisted pair and that is to get
constant impedance in the communication
wire. The Impedance is given by the cross
section, the electrical parameters in the
conductor and the isolation around the
conductor. If you keep those parameters
fixed you will also get a fixed impedance.
To keep the cross section you could glue
the two wires together or keep them
together by twisting them. The gluing is
more difficult and will not protect the wires
from the magnetic disturbance so the
twisting is the best solution. To put the
twisted pair in a shroud will protect the
wires from being untwisted and make them
less sensitive to changes in the
surrounding.
This text is too limited to describe all the
details around impedance. I have found
that the book Signal integrity-simplified
describes the details in such ways that
most engineers would grasp the important
part. The book “High Speed Signal
Propagation” describes better the cable
problem, but is little more difficult to
understand.

Kent Lennartsson
Kvaser AB
Aminogatan 25 A
SE-43153 Mölndal
Tel.: +46 31 886344
Fax: +46 31 886343
kent@kvaser.com
www.kvaser.com

Jonas Olsson
Kvaser AB
Aminogatan 25 A
SE-43153 Mölndal
Tel.: +46 31 886344
Fax: +46 31 886343
kent@kvaser.com
www.kvaser.com

References
[1] ISO-11898-1:2006
[2] ISO-11898-1:201x working draft
[3] “Signal integrity-simplified” by Eric Bogatin

ISBM 0-13-066946-6
[4] “High Speed Signal Propagation,

advanced black magic”, by Howard
Johnsson and Martin Green.

