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The use of higher bit-rates is not difficult to implement into modern microcontrollers. 
Even the smallest microcontrollers can handle clock-speeds in the 50 MHz range; 
enough to run CAN-FD bus at 10 Mbit/s. Also, the smallest MCU on the market today 
offer a 32-bit core with 32 kByte Flash and 8 kByte SRAM, as well as a great number of 
peripheral circuits. Compared to the overall chip size, the CAN-controller represents 
just 1% of the total area, with the result that the move from a classic CAN-controller to 
a CAN-FD version will increase the total chip area by just 0.5%. 
More challenging for the industry is how to handle the physical layer and in particular, 
the cable layout. CAN’s strength is its robustness, but this means that it can be 
forgiving of less than ideal CAN configurations. In most cases a correct bit-length and 
some resistance between the two wires is enough to make the CN communication 
work, because as long as the value at the sampling point is correct the CAN-frame is 
accepted. When the noisy edge comes close to the sample point, CAN is less 
forgiving. If you need higher bandwidth, the only solution is to increase the bit-rate 
and learn how to handle the short bits without any problem. The laws of physics are 
the same for CAN-FD, FlexRay, Ethernet etc., so that if a cable works with one of the 
above protocols, it will work for all others at the same bit-rate. 
 
The CAN FD Hardware 
 
CAN FD merely represents some 
additional logic to a standard CAN-
controller. The challenge lies in the higher 
bit-rate, which demands faster clocking 
from the bit handling logic. Our design is 
implemented in a Cyclone 4 FPGA from 
Altera which clocks at 80 MHz. We need at 
least one clock per Time Quanta to handle 
the bits. Theoretically, it will be possible to 
run CAN-FD at 20 Mbit/s, which is far 
beyond what is possible with the CAN-
drives available today.  
 

 
Figure 1: Four channel CAN FD on a  
PCI-express board 
 

 
The bus-structure and the cable layout 
make it very hard to reach such levels, 
even if CAN-drivers become available that 
can handle such bit-rates. Whit this 
knowledge it is clear that the CAN 
controller logic will never limit the speed of 
the CAN FD, rather the limiting factor will 
always be at the physical layer The actual 
hardware with 4 CAN FD-channels is 
shown in figure 1 running in a Linux 
computer. 
In figure 2, a block diagram shows one of 
four CAN-channels. This hardware is 
optimized for a PC-computer interface 
where 100% of the messages needs to be 
received and transferred to the processing 
application.   

 
Figure 2: Block view over one of the four 
CAN FD channels 
To reduce the delay over the PCI-express 
link, a DMA is used to transfer data directly  
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Figure 3: The bit-logic block 
 
from the CAN-controller FIFO to the PC-
memory. In most cases, the FIFO is empty 
and the only reason there is anything in 
the FIFO is due to a delay caused by Linux 
performing more important tasks. 
 
The CAN to CAN-FD step 
 
At the block level (see Figure 2) there is 
almost no difference to be seen between 
Classic-CAN messages and a CAN FD 
message. If you restrict CAN FD to handle 
0 to 8 byte of data, just two bits need to be 
added to the CAN message, FDF and 
BRS, indicating a request to send the 
package in FD format and if required, at a 
higher bit-rate. The FDF bit is used to 
indicate whether the message will be sent 
as Classic-CAN or CAN FD. The BRS bit 
is used to indicate a use of higher bit-rate 
in the CAN FD frame. It is possible to send 
0-8 byte data in a CAN FD frame without 
increasing the bit-rate. The advantage of 
this compared to Classic-CAN is the use 
of the more protective CRC-17 (a cyclic 
redundancy check code) in place of the 
CRC-15 used in Classic-CAN.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To handle CAN-frames with more than 8 
bytes will demand a new layout of the 
CAN-buffers to fit up to 64 byte of data. 
The problem of extending the buffer size is 
not covered in this paper. 
 
The logic behind CAN FD 
 
Figure 3 shows the logic that takes the 
selected message buffer and places it on 
the bus during a transmit request or 
receives the CAN-messages from the bus 
and hands it over for storage in a buffer. 
This logic includes the functions necessary 
to handle both Classic CAN and CAN FD 
frames. Two dedicated sub blocks have 
been added to the bit-logic to handle CAN 
FD text. The rest of the logic is common to 
both Classic CAN and CAN FD. This logic 
needs to be active all the time, according 
to the CAN-protocol i.e. from the ‘bus-on’ 
command until the ‘bus-off’ command, 
which turns communication off. Figure 3 
shows a simplified data flow. There are a 
great number of control signals to handle 
the logic under different conditions.  
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Figure 4: Classic-CAN compared with CAN-FD with one byte and 5 time faster bit-rate 
 

Figur 5: The bits that control the different CAN-FD functions 
 

 
 
 
 
 
 
 
 
 
 
Also, the Error handling logic is left out of 
the picture to simplify the description. 
The receiving path is not as complex as 
the transmit path. The receive path is the 
red line (the lines with arrows pointing to 
the left). The input from the CAN-driver is 
in the right lower corner of the figure 
“TX/RX Sync”. This interface will detect if 
there is a recessive to dominant edge that 
indicates the start of a CAN-Frame, SOF-
bit. This sets the bit-timing logic in motion,   
which samples the bit-stream according to 
the programmed configuration of the bit 
from the bus. 
The received bit is passed directly to CRC-
17 and CRC-21. However, the received bit 
passes through de-stuffing before it 
reaches the CRC-15, which is one of the 
major differences between Classic-CAN 
and CAN FD. By including the stuff-bits in 
the CRC-calculation you will get better 
protection against certain combinations of 
bit-errors in data-bits and any stuff-bits not 
included in the CRC-calculation. 
The de-stuffed bits are sent to the “CAN 
Handler” where the bits are collected and 
assembled into a complete message. The 
CAN handler will also check some control 
bits in the data-stream, which indicate the 
different types of CAN-frames to process. 
Classic-CAN has 4 types of messages all 
with CRC-15 and with nominal bit-rate. 

1. 11-bit ID with 0-8 byte of data. 
2. 11-bit ID with Remote Request. 
3. 29-bit ID with 0-8 byte of data. 
4. 29-bit ID with Remote Request. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Depending of the detected message type, 
it is necessary to adjust the assembly of 
the bits in the CAN handler before it is 
transferred into the CAN-buffer. 
The picture is made a little more complex 
when CAN FD is introduced into the 
control logic. For CAN FD, it is not enough 
to handle the bits differently in the CAN 
Handler, because the bit-handling shown 
in figure 1 also needs to be modified.  
CAN FD does not support Remote request 
but there are other CAN frame types that 
need to be handled. The following CAN FD 
message formats have to be handled in 
different ways in the CAN Handler and in 
bit-logic. 

1. 11-bit ID with 0-8,12,16 byte of data 
CRC-17 with nominal bit-rate 

2. 11-bit ID with 0-8,12,16 byte of data 
CRC-17 with data bit-rate. 

3. 11-bit ID with 20,24,32,48,64 byte of 
data CRC-21 with nominal bit-rate 

4. 11-bit ID with 20,24,32,48,64 byte of 
data CRC-21 with data bit-rate. 

5. 29-bit ID with 0-8,12,16 byte of data 
CRC-17 with nominal bit-rate 

6. 29-bit ID with 0-8,12,16 byte of data 
CRC-17 with data bit-rate. 

7. 29-bit ID with 20,24,32,48,64 byte of 
data CRC-21 with nominal bit-rate 

8. 29-bit ID with 20,24,32,48,64 byte of 
data CRC-21 with data bit-rate. 

Even if the handling of the 8 different 
formats is very similar, it is necessary to 
modify the logic (shown in Figure 4) to 
correctly receive CAN FD frames.  
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Figure 4 compares a Classic-CAN and 
CAN FD message with one byte payload 
where the data-rate is 5 times the nominal 
bit-rate. As can be seen in the figure, the 
CAN FD frame is much shorter because 
data as well as DLC and CRC are sent at 
the higher bit-rate. The CAN Handler will 
process the bits one by one in the same 
way independent of the used bit-rate. The 
only demand is that the logic is fast 
enough to process one bit before the next 
is received. 
 
Reception of a CAN FD frame 
 
Figure 5 is a view of the bits that changes 
the interpretation of the received bits when 
CAN FD is included in the CAN-standard. 
The first bit that involves CAN FD is the 
FDF-bit “Flexible Data Format” and at this 
point we already know if the CAN-
message is 11 or 29 bit ID. Also the RTR-
bit has been resolved in Classic-CAN. At 
this point of the message it could either be 
a Classic-CAN frame with 0-8 byte or one 
of 4 CAN FD formats. The Classic-CAN 
format is indicated by a dominant FDF-bit 
and in that case there will be no change 
needed in the logic in figure 3. 
If the FDF-bit is recessive the CAN format 
will be one of four possible types. In the 
FD format, CRC-15 is not used and can be 
disabled. In Classic-CAN, DLC follows the 
FDF-bit but in CAN FD, three more bits are 
included before DLC is reached. The first 
bit is R0-bit, which is reserved for future 
use to indicate the protocol that will come 
after CAN FD. For the CAN FD protocol 
this bit will always be dominant. 
The next bit is the BRS-bit, “Bit Rate 
Switch”. If this bit is dominant, the 
communication will retain the nominal bit-
rate through the rest of the message. This 
condition will not change anything in the 
figure 3 logic. If this bit is sampled as 
recessive it indicates that the rest of the 
bits will be sent at the higher data bit-rate. 
To handle the higher bit-rate it is 
necessary to change the sample clock to 
sample at this higher rate. Also, the edge 
detector need to switch to a clock that 
matches the shorter TQ “Time Quanta” 
used at the higher data bit-rate.  

The rest of the logic will continue to work 
in the same way, except at a higher clock 
rate. 
The next bit is the ESI-bit, “Error Status 
Indicator”, which is normally dominant but 
will be sent recessive when the sender is 
Error-Passive (the module has a major 
communication problem). This bit does not 
change anything in the control logic, but 
could be used for higher layer fault 
handling or diagnostic functions. The 
Error-Passive status is an internal 
condition in the CAN-controller and the 
sending CAN-controller can send this 
information without any support from host 
software. 
The ESI-bit is the first high speed bit and 
is followed by the 4-bit DLC pattern. The 
table below shows the possible number of 
data bytes supported by Classic-CAN and 
CAN-FD. The CAN handler has to convert 
the DLC into a number of bytes that need 
to be received in this particular message. 
It is also necessary to select which CRC 
will be used - CRC-17 or CRC-21 - at the 
end of the message, so that it can be 
compared with the CRC received from the 
sender of the CAN-message. When the 
last bit in the DLC is received, it is 100% 
clear how to handle every bit in this 
particular CAN message.  

Table 1: DLC coding 
DLC  CAN 

Bytes 
CAN-FD 
Bytes 

CAN-FD 
CRC- 

0-8 0-8 0-8 17 

9 8 12 17 

10 8 16 17 

11 8 20 21 

12 8 24 21 

13 8 32 21 

14 8 48 21 

15 8 64 21 
 
The last task for the CAN-handler when all 
data-bits have been received is to start the 
CRC-checking. This task is performed 
differently in Classic-CAN and CAN FD. 
To secure resynchronization, CAN FD 
uses fixed stuffing in the CRC-sequence 
where every 5th bit is followed by a bit 
value inverted by the previous bit value.  
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This secures a recessive to dominant 
edge within at least 10 bits. When a 
CAN FD frame reaches the CRC, the 
CRC-bits are redirected to CRC de-
stuffing before the received CRC-bits are 
compared to the internal calculated CRC-
sequence. Whether CRC-17 or CRC-21 is 
used depends on the number of data-
bytes received. If the number of bytes is 
16 or less, CRC-17 is used and if the 
number of bytes is more than 16 then 
CRC-21 is used. 
 
Transmission of a CAN-FD frame 
 
The main difference during transmission is 
the bit-error checking, when the sender 
must check that the transmitted bit is 
reflected with the correct value on the bus-
line. 
When a bit is transmitted it will take some 
time before the next bit has passed 
through the electronics out to the bus line 
and back again. This delay for Classic-
CAN devices are in the range 50 to 300 ns 
“nano seconds” and this could fit into the 
typical nominal bits that is not shorter than 
1000 ns. This make the logic for the 
nominal bit very simple because the 
transmitted bit is still valid when the bus is 
sampled and a direct compare can be 
used (shown in Figure 3 with the box 
CMP).   

 
Figure 6: at the higher bit-rate it is 
necessary to include a delayed compare 
 
As shown in figure 6 can in CAN FD this 
delay be longer than the length of high 
speed bits and a direct compare is not 
possible.  
 

The logic has to store the sent value and 
compare this value when this bit have 
been received back from the CAN-line. 
The more complex solution that’s 
necessary for CAN FD is shown in Figure 
6. The delay between the bit sent and the 
bit value received is measured at the EDL 
to R0 edge. This measured time is used as 
a delay in the SSP-block “Secondary 
Sample Point” in figure 3. The bit-value 
sent is saved and after the delay is 
compared with the value sampled from the 
CAN-bus. This delay is normally 1 or 2 bits 
but our design can handle up to 8 bits. 
The CAN handler also needs to select 
correct stuffing, CRC and bit-rate 
depending on the configuration of the 
CAN-buffer. 
 
CAN-FD with Classic-CAN 
 
One major problem with CAN FD is the 
redefinition of the Classic-CAN R1-bit into 
the FDF-bit. No Classic-CAN controller will 
accept CAN FD frames until the CAN 
controller has been modified according to 
the next ISO-11898-1 standard. In Classic-
CAN, the FDF-bit is received as either 
dominant or recessive and both values 
should be accepted. This is problematic for 
Classic-CAN because in it, the DLC is 
defined in the following four bits, rather 
than the new bits defined in CAN FD. 
Sooner or later, Classic-CAN will consider 
that the CAN FD frame has violated the 
CAN protocol. To solve this problem it is 
suggested that a redefinition of the FDF-bit 
is implemented in Classic-CAN where 
Classic-CAN controllers will ignore all bits 
following the recessive FDF-bit and 
reestablish communication when the CAN-
FD frame has ended. The end of any CAN 
message is a sequence of 11 recessive 
bits. However, just sampling the bus at a 
nominal rate is not enough in order to find 
this sequence correctly. With such a 
simple solution there is a risk that this 
sequence could be found when sampling 
within the CAN FD frame before the EOF 
“End Of Frame” section. As of September 
2013, no final solution has been specified 
as to how this will be implemented. 
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Figur 7: The bits that control the different CAN-FD functions 
 

 
 
 
 
 
 
 
 
 
 
 
Enhanced CAN-format 
 
During the development of the CAN FD 
controller, we had to analyze the CAN-bits 
in detail to secure our behavior on the bus. 
During this work we found that Classic-
CAN is very insensitive to noise within the 
bit and that it will accept noise in the bit, as 
long as you receive the correct value at 
the sampling point. To understand how 
this works, we have to study the definition 
of a nominal bit, as shown in figure 7. In 
Classic-CAN, the CAN-controller looks for 
recessive to dominant edges that are used 
to adjust the sampling point in relation to 
this edge. When the CAN-bus is idle, this 
edge causes a hard synchronization of the 
sampling and the sampling is performed at 
11 TQ from this edge, with a bit-
configuration as shown in figure 7.  
 

 
Figure 8: the nominal bit definition 
 
In the rest of the message, the Stuff-bits 
ensure that there will be at least one such 
recessive to dominant edge every 10-bit to 
readjust the sampling point. If the receiver 
clock is running too slow or too fast, it 
must be ensured that the sampling point 
hasn’t moved by more than 3 TQ (shown 
in green, in figure 7). When the dominant 
edge is detected, the bit is adjusted by the 
number of TQ, as configured in the SJW 
“Synch Jump Width” register.  

 
 
 
 
 
 
 
 
 
 
 
If the edges are 2 TQ too early (in Phase 
segment 2), this segment will be 2 TQ 
shorter in this bit. If the edges are 2 TQ 
late (in the propagation segment) then 
Phase segment 1 will be 2 TQ longer in 
the following bit time. All other edges will 
be ignored and considered as noise.  
With this knowledge, it was possible to put 
high-speed data in the propagation 
segment that would be treated as noise by 
Classic-CAN controllers but could be 
received and collected by other controllers 
with the means to interpret the additional 
information. This solution is just an 
extension of Classic-CAN that effectively 
increases data-rate without making any 
changes to the Classic CAN-controller 
hardware. It is even forward compatible 
with CAN FD because the CAN FD 
controller will interpret this as a Classic-
CAN frame with a noise problem that will 
be filtered away by the robust CAN-
protocol. The name given to this solution is 
CAN-EF “Enhanced Format” 
 
CAN-EF performance 
 
It is clear that CAN-EF will not be as 
efficient as CAN-FD because the CAN-EF 
protocol needs to use a large number of 
TQ to protect the Classic-CAN sampling 
point. The simplest solution is to just add 
one extra bit in the propagation segment, 
which shouldn’t be problematic when 
running below 1 Mbit/s. One bit may seem 
marginal, but it still represents an increase 
of almost 100% in the CAN-EF 
communication – effectively, you double 
the performance at no cost. In this case, 
the performance is not too far removed 
from CAN-FD, with a data-rate twice the 
nominal-rate, except with a CRC that is 
twice as long in CAN-EF as that of  
CAN FD.  
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CAN-EF will also need some overhead bits 
that will limit the number of extra bytes to 
less than double. 
Another example is a bus running at 250 
kBit/s with a bit as described in figure 7. In 
this case, the propagation segment is 7 TQ 
(62,5 ns) 437,5 ns long and if we put  
3 bits in this part, it will result in a CAN-EF 
bit-rate of less than 2 Mbit/s. With this 
solution you can increase the CAN-EF data-
rate by 4 times, but still running the Classic-
CAN unmodified at 250 kBit/s. The 
arbitration is a pretty complicated condition 
and if the system can handle that event at 
250 kBit/s, it will most probably be possible 
to send data at 1 Mbit/s. To increase the 
nominal bit-rate beyond 250 kBit/s may be 
impossible due to cable length. If you can 
run CAN-EF at 2 Mbit/s, it is also possible to 
run CAN FD at this bit-rate. The propagation 
segment does not limit CAN FD and in this 
case, the data-rate is almost twice CAN-
EF’s performance. The justification for using 
CAN-EF is its ability to use already available 
modules that are not compatible with 
CAN FD. With CAN-EF it will be possible to 
increase the data-rate at least 4 times for 
every module that is replaced with CAN-EF. 
When all modules are replaced it will be 
possible to make the next performance step 
by enabling CAN FD and make a last 
doubling of performance. Of course, is it not 
necessary to make one big step from 250 
kBit/s to 2 Mbit/s. It could be done in smaller 
steps where you slowly adopt a higher bit-
rate and possibly adjust filters and cable 
layout to handle an increased bit-rate, 
gradually. By this point, you will be well 
prepared for the final step to CAN FD when 
all modules are replaced with CAN FD 
functionality. 
The rule of thumb is that the space for CAN-
EF bits is between 40 and 80% of the 
nominal bit. The lower value, 40%, is when 
there is a big variation in clock speed and a 
very short propagation segment. How many 
CAN-EF bits fit into the propagation 
segment depends on how high a bit-rate 
your CAN-driver and cable layout can 
handle.  
 
The CAN-EF limitation 
 
The major challenge to using CAN-EF is 
CAN’s inherent robustness. Its robustness 
makes it possible to get a working system  
 

with almost any setting of the sample point 
and SJW, as long as the bit-length is 
correct. This has resulted in a system with 
modules that can have almost any bit 
configuration. All will work well as long as 
there is  
not too much noise or other disturbance in 
the system. However, as soon as you 
have poor cabling or electrical noise, you 
can expect to encounter problems that will 
be hard to find because they are hidden in 
the bit-handling, internal to the different 
CAN-controllers connected to the CAN-
bus. For Classic-CAN controllers, the 
CAN-EF communication is just noise even 
if the noise is generated by the CAN-EF 
protocol. If Classic-CAN does not have the 
correct bit or clock settings outside the 
specification, problems will occur when too 
much of the propagation segment is used 
with CAN-EF bits. In other words CAN-EF 
communication is a perfect tool to check 
how robust your Classic-CAN network is 
against disturbance. 
To use CAN-EF efficiently, it is necessary 
to ensure that there are optimal settings in 
all Classic-CAN modules. This ensures a 
more robust Classic-CAN system and a 
maximum number of bits in the CAN-EF 
frames at the same time. 
It will of course be possible to measure 
how much of the propagation segment is 
available for CAN-EF and only utilize that 
for that purpose, but that will leave the rest 
of the CAN-system as weak as it was 
without CAN-EF. 
As with all CAN-systems, one module with 
a bad bit-timing setting or bad clock is 
enough to compromise the performance of 
the system. It is the weakest link in the 
chain that sets the limitation of the entire 
system.  

 
 
Figure 9: 250 kBit/s nominal bits with  
10 EF bits at 4 MBit/s in the propagation 
segment 
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Figure 8 is an oscilloscope snapshot where 
the CAN-EF frame has been sent over 42 
meter twisted pair with an impedance of 100 
Ohm and with a 120 Ohm resistor at each 
end of the cable. 
 
The physical layer 
 
When increasing the bit-rate the mayor 
problem will be the cable layout. To make a 
high speed transmission line is basically 
very simple because the only demand is to 
keep the same impedance from the source 
of the signal to the receiver. The actual 
impedance can have any value and if you 
take two typical wires used in a car and 
twist them you will get 120 Ohm and if the 
wires are thinner like in an EtherNet CAT5 
cable you will get 100 Ohm. Any of them 
can be used for the CAN-bus, but you will  
get problem if you mix them in the same 
bus-line. Even if you manage to use the 
very same cable in the CAN-bus it will be 
necessary to end the cable in a connector 
that fits to the CAN-module. Even if the 
RJ45 connector, used for a standard 
EtherNet cables at 10/100/1000 Mbit/s, 
looks simple it is carefully designed to keep 
the 100 Ohm impedance when connected 
to your computer or hub. In CAN and CAN-
FD it is little simpler, because there is a 
relation between the bit-rate and how much 
impedance miss-match that can be 
accepted without disturbing the signal. 
The right most column, in table 2, is a rough 
estimation how much of your CAN-bus 
cable that can be of different type with 
different impedance. A drop line could be 
compared with replacing a segment of the 
cable with cable segment with the same 
length and with 50% of the impedance 
value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 2: Relation between  

Bit-rate 

(Mbit/s) 

Bit-
length 
(ns) 

rise-
fall 
time 
(ns) 

Rise 
length 

(m) 

Acceptable 
impedance 
miss-match 
length  (m) 

1000 1 0.1 0.02 0.01 

100 10 1 0.2 0.1 

10 100 10 2 1 

1 1000 50 10 5 

0.5 2000 100 20 10 

0.125 8000 400 80 40 

 
The physics is the same as sound waves 
passing through an iron bar connected to 
an aluminum bar where some of the wave 
will bounce back at the change in material. 
If you have a cable with the same 
impedance it will continue forever, but for 
every miss match will you get some 
reflections and the amount of reflections 
will depend on the scale of the miss-
match. Even if the miss-match is small 
they will all add up and make the signal to 
disturbed to be useful. 
As can be seen from the table it is 
necessary to keep the impedance miss-
match in EtherNet within centimeters 
compared to meters for a typical Classic-
CAN. When we increase the bit-rate we 
will be more and more sensitive to 
impedance miss-match in the bus layout. If 
you have several drop lines or cable 
segments with different impedance, you 
have to add them all together and check 
that they are less than the value in the 
rightmost column to know that they will not 
give problem in the communication.  
Classic-CAN is very insensitive and it will 
be possible to have much larger numbers 
compared to the table above before there 
are Error-frames in the communication. 
This can be observed by connecting an 
oscilloscope to the CAN-bus and if you 
see a signal with a lot of ringing and 
disturbed edges then you have impedance 
miss-match in the bus-layout. 
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Twisted wires 
 
To get constant impedance in a CAN-bus 
it is not necessary to twist the two wires 
CANH and CANL, but there are three 
reasons to twist the two wires. The first 
two are to protect the communication wire 
for electromagnetic radiation. If the two 
wires are kept together within say 1 mm. It 
will be necessary to have an electrical field 
at 1000 Volt/meter to get a 1 Volt 
difference between CANH and CAN-low 
and that is not enough to make any 
problem in a CAN-communication. The 
second reason is for magnetic field 
protection. A magnetic field will induce a 
current in the CAN-wires and the amount 
of induced current depends on the 
strength of the magnetic field multiplied 
with the area between the two wires. First 
of all will the twist reduce the exposed 
area and secondly will the twist change the 
polarity of the magnetic field and by that 
reverse the induced current in every pair of 
twist. This is the two reasons why 
differential CAN-communication is so 
much more robust compared to K-line, LIN 
and SWC (Single Wire CAN) even at low 
bit-rates. 
At higher bit-rate there is a third reason to 
have a twisted pair and that is to get 
constant impedance in the communication 
wire. The Impedance is given by the cross 
section, the electrical parameters in the 
conductor and the isolation around the 
conductor. If you keep those parameters 
fixed you will also get a fixed impedance. 
To keep the cross section you could glue 
the two wires together or keep them 
together by twisting them. The gluing is 
more difficult and will not protect the wires 
from the magnetic disturbance so the 
twisting is the best solution. To put the 
twisted pair in a shroud will protect the 
wires from being untwisted and make them 
less sensitive to changes in the 
surrounding. 
This text is too limited to describe all the 
details around impedance. I have found 
that the book Signal integrity-simplified 
describes the details in such ways that 
most engineers would grasp the important 
part. The book “High Speed Signal 
Propagation” describes better the cable 
problem, but is little more difficult to 
understand. 
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