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Speed up your calibration with CAN FD 
 

Dr. David Gary Hickman, Etas 
 
A description of the new CAN FD format is given, describing all the changes, not only 
for the data rate and payload size. An analysis of how this affects the overall data rate 
of the CAN bus is shown. The changes in the new measure and calibration standard 
XCP1.2 to support CAN FD are described, and then an analysis of the busload can be 
calculated with CAN FD, plus the likely improvements in the XCP download and flash 
times. Benefits can also be made to the measure performance using DAQ. The CAN 
FD changes mean either the same measure data can be sent with reduced bandwidth, 
more data can be send at the same rasters, or data can be send in faster raster then 
previously possible. 
 
Getting more performance from the CAN 
system was not easy because the CAN 
speed is limited to ensure the message 
arbitration occurs reliably. In addition the 
message structure means each message 
has a large overhead compared to 
payload. The solution is CAN FD, which 
sends the data part of the message faster, 
and increases the payload size from 8 to 
64 bytes. In this paper we will look at the 
impact this can have on measurement and 
calibration using XCP on CAN FD. 
 
Main changes with CAN FD 
 
The speed the CAN bus can operate at is 
determined by the need to complete the 
message arbitration]. So the speed is 
dependent on the length and topology of 
the bus. For passenger vehicles the CAN 
speed is between 500 Kbit/s - 1Mbit/s, 
while in commercial vehicles, bus speeds 
of 250 kbit/s are more typical.  
With CAN FD [1], the speed of the 
arbitration remains the same. However at 
the end of arbitration when only one node 
is sending, the bus speed can be 
increased. This is the idea of CAN FD. The 
payload part of the CAN message, and the 
CRC (Cyclic Redundancy Check) are send 
at a higher bit rate then the arbitration.  

 
Figure 1: Effect of bitrate change 

Figure 1 shows the effect of the bitrate 
change. In the example the flexible data 
rate is set to 4Mbits/s. The effect is to 
reduce the required time to send the data, 
allowing more CAN frames to be sent on 
the bus. 
In addition, CAN FD allows the payload 
size to be increased. Before, the payload 
was limited to 8 bytes. With CAN FD  
this can be increased to a maximum of  
64 bytes. 
The same DLC code format is used as for 
legacy CAN. With CAN FD, 7 new payload 
sizes are made available representing  
the full use of the DLC3 bit as shown in 
Figure 2. 
 

 
Figure 2: Payload Data Length Codes 
 
To support the longer payload, the Cyclic 
Redundancy Check (CRC) used to 
checksum the payload, also needs to be 
extended.  
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Figure 3: CAN FD CRC codes 
 
Figure 3 shows the new CRC codes 
available. For the CAN FD messages up to 
16 bytes we use a 17 stage polynomial. 
Between 17 and 64 byte payloads a 21 
stage polynomial is used. 
To identify CAN FD messages, the CAN 
FD frames have a new message structure 
shown in Figure 4. 
 

 
Figure 4: Comparison of CAN and CAN 
FD messages in base frame formats  
(11 bit identifier) 
 
After the arbitration, a CAN FD frame will 
always send a dominant r1 (reserved) 
frame instead of the RTR (Remote 
Transmission Request). This means CAN 
FD does not support remote frames. The 
recessive EDL (Extended Data Length) is 
the identifier of a CAN FD frame. The BRS 
(Bit Rate Switch) is transmitted recessive 
and is used as the switch to change the bit 
rate to the flexible data rate. 
A consequence of the different frame 
structure is that CAN and CAN FD 
messages cannot be easily mixed on a 
single bus. The reason legacy CAN nodes 
will detect an error when it receives a CAN 
FD frame 
 
Other changes with CAN FD 
 
There are some additional changes with 
CAN FD which are not directly related to 
increased payload size and flexible data 
rate.  
The ESI (Error State Indicator) is a new bit 
for CAN FD frames. It allows error passive 
and error active nodes to be identified to 
help find the cause of bus failures.  
In addition the stuff bit method for the CRC 
sequence is changed. For CAN FD, stuff  
 

bits will be inserted at fixed positions, even 
if the preceding bits do not satisfy the bit 
stuffing criteria. So a stuff bit will be 
inserted in the first bit of the CRC 
sequence, then after each fourth bit of the 
CRC sequence. The inserted stuff bit will 
be the inverse of the preceding bit.  
 

 
Figure 5: CRC sequence Stuff Bits 
 
This means the CRC-17 always has 5 stuff 
bits, and the CRC-21 always 6 stuff bits. 
 
Data bit rates for CAN FD 
 
Calculating the data bit rates for CAN FD 
is complicated by the fact there are 2 data 
rates, and the messages can have 
variable payloads. In addition, because of 
the bit stuffing, the message lengths can 
change even if the payload remains 
constant 
 

 
Figure 6: Max and Min CAN frame lengths 
 
Figure 6 shows the max and min sizes of 
the frame length with no and maximum bit 
stuffing. For the bit rate calculations, we 
will assume no bit stuffing. In addition, for 
all the calculations we will assume an 
arbitration rate of 1 Mbit/s. The 1 Mbit/s 
will be used for all subsequent examples 
presented in this paper.  
There are 2 ways of showing the data rate. 
One is the net bit rate, which is the rate 
sending the complete CAN frame data, 
including the arbitration and CRC 
information. The other is the average bit 
rate. This is calculated by taking only the 
payload part, and dividing this by the time 
taken to send the complete message.. 
This shows the rate the useful information 
is transferred at. 
This data is plotted on Figure 7, for 
standard arbitration length frames with  
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payloads of 8, 24 and 64 bytes. What can 
be seen is there is a big difference 
between the overall and effective data 
rates for 8 byte payloads. This is because 
the ratio of payload to overall message 
length (message efficiency) of these low 
payloads is not high. The higher message 
efficiency of the 64 byte payload means 
the difference in the overall and effective 
data rates are much smaller  
 

Figure 7: Net and average bit rates for 
different CAN loads 
 
It is also useful to look at the effect of the 
bit stuffing on the data rate as this is 
important for analyzing the XCP measure 
performance. 
 

 
Figure 8: Effect of bit stuffing of effective 
data rate 
 
Figure 8 shows the effect of bit stuffing on 
the effective data rate. The effect for 8 
byte payloads is low. For 64 byte payloads 
the effect is to reduce the data rate by over 
12%. This is because of the large potential 
number of stuff bits in the longer 64 byte 
payload. 

 
Figure 9: Time to send single legacy 
CAN/CAN FD from with maximum bit 
stuffing  
 
Figure 9 shows the time required to send a 
single legacy CAN and CAN FD frame. 
The calculated time represents the worst 
case scenario, with each frame having the 
maximum stuff bits. The time for the 8 byte 
legacy CAN is plotted against all FD data 
rates in order to compare the send times 
for CAN FD and legacy CAN. CAN FD 
frames with 8 byte payloads are 
transmitted faster than legacy CAN 
frames. This has implications for XCP 
DAQ measurement because it means we 
can send data at faster rates. Although 64 
byte CAN FD messages are longer than 
legacy CAN messages, when the FD is 
greater than 6 Mbit/s, even these are sent 
faster than legacy CAN messages. 
 
XCP 1.2 features relating to CAN FD 
 
The XCP 1.2 standard was released in 
June 2013 [2]. Included in the specification 
is the support of CAN FD. The main 
change is to extend the XCP on CAN 
Transport Layer part to additionally include 
CAN FD. 
Part of the change in the XCP1.2 standard 
is to introduce a Dynamic DAQ raster 
check mechanism. The check itself is 
entirely offline and performed by the 
calibration tool, and relies on entries in the 
XCP on CAN part of the a2l file. The check 
itself has 3 parts: CPU usage and memory 
limits for building and sending the DAQ 
lists, and a busload limit for the DAQ 
massages that are send on the bus. For 
CAN FD we are only concerned with the 
busload limit. Of course, if the extra 



iCC 2013  CAN in Automation 

02-15 

bandwidth of CAN FD is used to send 
more measure data there will be an effect 
on the CPU and memory consumption.  
The whole topic of busload and actual data 
rates with CAN FD is complicated and will 
be looked at in the next section. For the 
calculation of CAN FD busload, an 
assumption of the frame sizes must be 
made, based on the DLC used for  
the DAQ lists. The values are shown in 
Figure 10.  
 

 
Figure 10: CAN Frame length for raster 
check 
 
The value of DLC used depends on the 
MAX_DLC_REQUIRED declaration in the 
a2l file. Because the CAN frame is not 
fixed due to the amount of bit stuffing, the 
values used in the tables represent the 
average CAN frame length. 
In addition, the arbitration length of the 
standard and extended CAN IDs also need 
to be known. These are sent at the 
arbitration CAN data rate, so the 
calculation of the overall rate must be 
separated to include the arbitration and 
data phases.  

- For standard ID arbitration is set to 
30bit 

- For extended ID arbitration is set to 
50bit 

The overall busload  is calculated  factored 
to the arbitration bit rate. So we first 
calculate the number of bits sent for each 
CAN message factored to the ratio 
arbitration data rate to the CAN FD data 
rate.  

#  𝐵𝑖𝑡𝑠 = #  𝐴𝑟𝑏  𝐵𝑖𝑡𝑠 +
#  𝐷𝑎𝑡𝑎𝑏𝑖𝑡𝑠 ∗ 𝐵𝐴𝑈𝐷𝑅𝐴𝑇𝐸
𝐶𝐴𝑁  𝐹𝐷  𝐵𝐴𝑈𝐷𝑅𝐴𝑇𝐸

   

We sum this for each ODT in an Event 
(raster) and then sum again for every 
Event (or raster) selected. This total 
busload is divided by the arbitration data 
rate to calculate the bus load. 

The remaining changes for the XCP 
specification in respect to CAN FD refer to 
the a2l file changes. These are listed in 
table 1. 

Table 1: XCP1.2 a2l file changes for CAN FD 

Entry Block Comment 

MAX_DLC CAN FD Set the maximum 
Message size 

CAN_FD_DATA_TR
ANSFER_BAUDRA
TE 

 FD Baudrate 

SAMPLE_PONIT CAN FD 

Added to because 
new parameters 
required for FD 
baudrate part 

SAMPLE_RATE CAN FD See above 
BTL_CYCLES CAN FD See above 
SJW CAN FD See above 
SYNC_EDGE CAN FD See above 
MAX_DLC_REQUIR
ED CAN FD See above 

SECONDARY_SAM
PLE_POINT CAN FD See above 

TRANCEIVER_DEL
AY_COMPENSATI
ON 

CAN FD 

Should not be 
required as the 
transceiver 
themselves will 
calculated this. 

 
SAMPLE_RATE is the flexible data rate. 
The entries for SAMPLE_POINT; 
BLT_CYCLES and SJW are required 
because the flexible data rate part can 
have different values to the arbitration data 
rate, because the transmission speed is 
increased. The TRANSCEIVER_DELAY_ 
COMPENSATION refers to the delay 
required to correctly read the sent bits. If 
no error is set, then the bit error detection 
will not function, resulting false errors 
being detected. Although specified in the 
XCP standard, actually this is not needed 
as the transceiver itself should determine 
the required delay compensation. 
 
CAN FD effect on Data Download 
 
One of the main interests of CAN FD up to 
now has been to use its increased data 
rate and payload size to improve the ECU 
data download and flash times. An 
illustration of the improvements is shown 
in Figure 11. This shows the time to 
download 500Kbytes of data using block  
 



iCC 2013  CAN in Automation 

02-16 

transfer with a block size of 256Kbytes 
and a message separation time (STmin) of 
0sec.  
 

 
Figure 11: Data download times 
 
The data shows significant improvements 
to download times can be realized, even 
when 8 byte payloads are used. So 
increasing the FD to 5 Mbits/s results in 
over a halving of the download time. 
Further improvements are made by 
increasing the payload.  
 
CAN FD effect on DAQ Measurement 
 
DAQ (Data Acquisition) is the method 
used by XCP to collect measure data. 
Data is collected and sent by the slave 
device at fixed time or event intervals. For 
ECUs the intervals normally correspond to 
internal calculation cycles. This allows 
signals to be measured in the same cycle 
the signal is generated or when it is used 
in a software function. 
The analysis concentrates on DAQ 
messages having 8 and 64 byte payloads. 
8 bytes represents the easiest change to 
CAN FD by only changing the data rate. 
64 byte payload offers the best data 
transfer performance, and also offers 
advantages of better data consistency. By 
packing more data into a single CAN 
frame, there is less risk of the data being 
updated from the ECU controller before all 
the data has been sent. This is a risk if 
data has to be packed over several frames 
and the data has to be buffered longer 
before it is sent.  
There are a number of possible ways CAN 
FD can affect DAQ. The first is to examine 

the effect of changing the CAN FD settings 
which keeping the same busload limit.   

 
Figure 12: bytes transferred maintaining 
30 % busload 
 
Figure 12 displays the amount of measure 
data that can be sent if the busload is 
maintained constant and the FD rate and 
payload is increased. In this case the 
busload is kept to 30 %. To keep the 
calculation simple, we are just transferring 
data in a single 10ms event. Our baseline 
is a 30% busload with legacy 8 byte CAN, 
which allows us to send 184 bytes every 
10ms.  The graph shows how many bytes 
of data at 10ms represents with different 
CAN FD parameters and a 30% busload. 
The data transferred with legacy 8 byte 
CAN is also plotted as a comparison. Of 
course the legacy CAN values for the 
different FD rates cannot exist. We plot 
them in this way only to see the benefits of 
CAN FD: 
The graph shows that maintaining an 8 
byte payload and increasing the flexible 
data rate results in a significant increase in 
data transmitted. With an FD of 5 Mbit/s 
the data that can be sent is more than 
doubled from 184 to 480 bytes. If the DLC 
is increased to 64 bytes, then the increase 
in data transferred is much greater. An FD 
of 5 Mbit/s means an increase from 184 
bytes for legacy 8 byte CAN to 1216 bytes, 
a 6 fold increase.  
This example is important if busload is the 
limiting factor for XCP measure 
performance. This is often the case. It 
shows the increase in bandwidth with CAN 
FD can bring significant improvements to 
measure performance. 
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The next example looks at the effect on 
the busload when we send the same 
amount of data with different CAN FD 
settings. So again the starting point is a 
30% busload with legacy CAN, sending all 
the data every 10ms.  

 
Figure 13: Effect on busload if the bytes 
transferred remains constant 
 
Figure 13 plots the busload with different 
CAN FD parameters. With an 8 byte 
payload, then even relatively low flexible 
data rates have a significant effect on 
busload, falling to a third of the legacy 8 
byte CAN load at an FD of 5 Mbit/s. Using 
64 byte payloads further reduces the 
busload. This information is useful if the 
limit of the measure data is ECU 
performance. In this case the impact of 
XCP on the CAN bus is reduced.  
 
The last example considered here is the 
possibility to measure data at faster rates 
using CAN FD. This use case is becoming 
more important with the adoption of 
electric and hybrid motors which require 
faster measure rasters then traditional 
combustion engine controllers. In this 
analysis, we will consider the effect on 
busload sending data in very fast rasters 
with different CAN FD settings.  

 
Figure 14: busload measuring data in fast 
rasters 
 
In Figure 14 we show the busload required 
to measure 64 bytes of data in 0.5ms and 
0.25ms rasters. With the legacy 8 byte 
CAN neither configuration is possible, with 
busloads over 100%. With 8 byte DLC, this 
measurement at 0.5ms is possible at FD 
rates over 2.5 Mbit/s. However 
measurement of 0.25ms raster is also not 
possible. With the adoption of 64 byte DLC 
it is possible to measure much faster 
measure rasters with acceptable busloads. 
So using XCP on CAN FD could result in 
new applications that need higher 
measure rates that were not possible 
using XCP on legacy CAN. 
 
CAN FD effect on STIM 
 
In terms of the XCP protocol, STIM is the 
same as DAQ, except it works in the 
opposite direction. So the master sends 
the slave data. However the use case 
behind STIM is very different to DAQ, and 
so the effect of CAN FD is also different. 
STIM is used for rapid prototyping where 
some or all of the calculations normally 
done by the ECU are done by and external 
processors, normal called a Rapid 
ProtoTyping system (RPT) 
 

 
 
Figure 15: Basic bypass implementation  
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For Bypass the data has to be sent via 
DAQ from the ECU to the RPT, a 
calculation needs to occur and the data 
then sent back to the ECU as STIM. This 
sequence is shown in Figure 14. The time 
taken for the complete roundtrip, the so 
called latency, must be less than the task 
time the RPT is replacing. The latency is 
made up of the time required for the ECU 
to send the data, the RPT to process it, the 
time the bus needs to receive and send 
the data plus the time the ECU needs to 
read it back. So the bus time is only one 
part of this. For this reason it is difficult to 
judge the impact of CAN FD. Any 
improvements in bus transport times need 
to be judged in the context of the entire 
system before assessing any 
improvements that can be made with  
CAN FD.  
 
Summary 
Described is the CAN FD format, and 
XCP1.2 changes that support the CAN FD 
standard. This provides benefits for data 
downloading and flashing, which have 
already been publicized. However CAN FD 
can also bring improvements to 
measurement with DAQ. It has been 
shown that more data can be transmitted 
at a fixed busload, or if the same amount 
of data is to be sent, then the impact on 
the busload is reduced. In addition is it 
possible to send data at faster measure 
rates using CAN FD, which could extend 
the use of XCP on CAN FD buses to 
applications that currently cannot use 
CAN. The effect of CAN FD on STIM 
applications was considered, but because 
the timing of the overall system depends 
on more elements than just the transport 
layer, it is difficult to make firm conclusions 
of the benefit. 
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