
iCC 2013 CAN in Automation

 02-12

Speed up your calibration with CAN FD

Dr. David Gary Hickman, Etas

A description of the new CAN FD format is given, describing all the changes, not only
for the data rate and payload size. An analysis of how this affects the overall data rate
of the CAN bus is shown. The changes in the new measure and calibration standard
XCP1.2 to support CAN FD are described, and then an analysis of the busload can be
calculated with CAN FD, plus the likely improvements in the XCP download and flash
times. Benefits can also be made to the measure performance using DAQ. The CAN
FD changes mean either the same measure data can be sent with reduced bandwidth,
more data can be send at the same rasters, or data can be send in faster raster then
previously possible.

Getting more performance from the CAN
system was not easy because the CAN
speed is limited to ensure the message
arbitration occurs reliably. In addition the
message structure means each message
has a large overhead compared to
payload. The solution is CAN FD, which
sends the data part of the message faster,
and increases the payload size from 8 to
64 bytes. In this paper we will look at the
impact this can have on measurement and
calibration using XCP on CAN FD.

Main changes with CAN FD

The speed the CAN bus can operate at is
determined by the need to complete the
message arbitration]. So the speed is
dependent on the length and topology of
the bus. For passenger vehicles the CAN
speed is between 500 Kbit/s - 1Mbit/s,
while in commercial vehicles, bus speeds
of 250 kbit/s are more typical.
With CAN FD [1], the speed of the
arbitration remains the same. However at
the end of arbitration when only one node
is sending, the bus speed can be
increased. This is the idea of CAN FD. The
payload part of the CAN message, and the
CRC (Cyclic Redundancy Check) are send
at a higher bit rate then the arbitration.

Figure 1: Effect of bitrate change

Figure 1 shows the effect of the bitrate
change. In the example the flexible data
rate is set to 4Mbits/s. The effect is to
reduce the required time to send the data,
allowing more CAN frames to be sent on
the bus.
In addition, CAN FD allows the payload
size to be increased. Before, the payload
was limited to 8 bytes. With CAN FD
this can be increased to a maximum of
64 bytes.
The same DLC code format is used as for
legacy CAN. With CAN FD, 7 new payload
sizes are made available representing
the full use of the DLC3 bit as shown in
Figure 2.

Figure 2: Payload Data Length Codes

To support the longer payload, the Cyclic
Redundancy Check (CRC) used to
checksum the payload, also needs to be
extended.

iCC 2013 CAN in Automation

02-13

Figure 3: CAN FD CRC codes

Figure 3 shows the new CRC codes
available. For the CAN FD messages up to
16 bytes we use a 17 stage polynomial.
Between 17 and 64 byte payloads a 21
stage polynomial is used.
To identify CAN FD messages, the CAN
FD frames have a new message structure
shown in Figure 4.

Figure 4: Comparison of CAN and CAN
FD messages in base frame formats
(11 bit identifier)

After the arbitration, a CAN FD frame will
always send a dominant r1 (reserved)
frame instead of the RTR (Remote
Transmission Request). This means CAN
FD does not support remote frames. The
recessive EDL (Extended Data Length) is
the identifier of a CAN FD frame. The BRS
(Bit Rate Switch) is transmitted recessive
and is used as the switch to change the bit
rate to the flexible data rate.
A consequence of the different frame
structure is that CAN and CAN FD
messages cannot be easily mixed on a
single bus. The reason legacy CAN nodes
will detect an error when it receives a CAN
FD frame

Other changes with CAN FD

There are some additional changes with
CAN FD which are not directly related to
increased payload size and flexible data
rate.
The ESI (Error State Indicator) is a new bit
for CAN FD frames. It allows error passive
and error active nodes to be identified to
help find the cause of bus failures.
In addition the stuff bit method for the CRC
sequence is changed. For CAN FD, stuff

bits will be inserted at fixed positions, even
if the preceding bits do not satisfy the bit
stuffing criteria. So a stuff bit will be
inserted in the first bit of the CRC
sequence, then after each fourth bit of the
CRC sequence. The inserted stuff bit will
be the inverse of the preceding bit.

Figure 5: CRC sequence Stuff Bits

This means the CRC-17 always has 5 stuff
bits, and the CRC-21 always 6 stuff bits.

Data bit rates for CAN FD

Calculating the data bit rates for CAN FD
is complicated by the fact there are 2 data
rates, and the messages can have
variable payloads. In addition, because of
the bit stuffing, the message lengths can
change even if the payload remains
constant

Figure 6: Max and Min CAN frame lengths

Figure 6 shows the max and min sizes of
the frame length with no and maximum bit
stuffing. For the bit rate calculations, we
will assume no bit stuffing. In addition, for
all the calculations we will assume an
arbitration rate of 1 Mbit/s. The 1 Mbit/s
will be used for all subsequent examples
presented in this paper.
There are 2 ways of showing the data rate.
One is the net bit rate, which is the rate
sending the complete CAN frame data,
including the arbitration and CRC
information. The other is the average bit
rate. This is calculated by taking only the
payload part, and dividing this by the time
taken to send the complete message..
This shows the rate the useful information
is transferred at.
This data is plotted on Figure 7, for
standard arbitration length frames with

iCC 2013 CAN in Automation

02-14

payloads of 8, 24 and 64 bytes. What can
be seen is there is a big difference
between the overall and effective data
rates for 8 byte payloads. This is because
the ratio of payload to overall message
length (message efficiency) of these low
payloads is not high. The higher message
efficiency of the 64 byte payload means
the difference in the overall and effective
data rates are much smaller

Figure 7: Net and average bit rates for
different CAN loads

It is also useful to look at the effect of the
bit stuffing on the data rate as this is
important for analyzing the XCP measure
performance.

Figure 8: Effect of bit stuffing of effective
data rate

Figure 8 shows the effect of bit stuffing on
the effective data rate. The effect for 8
byte payloads is low. For 64 byte payloads
the effect is to reduce the data rate by over
12%. This is because of the large potential
number of stuff bits in the longer 64 byte
payload.

Figure 9: Time to send single legacy
CAN/CAN FD from with maximum bit
stuffing

Figure 9 shows the time required to send a
single legacy CAN and CAN FD frame.
The calculated time represents the worst
case scenario, with each frame having the
maximum stuff bits. The time for the 8 byte
legacy CAN is plotted against all FD data
rates in order to compare the send times
for CAN FD and legacy CAN. CAN FD
frames with 8 byte payloads are
transmitted faster than legacy CAN
frames. This has implications for XCP
DAQ measurement because it means we
can send data at faster rates. Although 64
byte CAN FD messages are longer than
legacy CAN messages, when the FD is
greater than 6 Mbit/s, even these are sent
faster than legacy CAN messages.

XCP 1.2 features relating to CAN FD

The XCP 1.2 standard was released in
June 2013 [2]. Included in the specification
is the support of CAN FD. The main
change is to extend the XCP on CAN
Transport Layer part to additionally include
CAN FD.
Part of the change in the XCP1.2 standard
is to introduce a Dynamic DAQ raster
check mechanism. The check itself is
entirely offline and performed by the
calibration tool, and relies on entries in the
XCP on CAN part of the a2l file. The check
itself has 3 parts: CPU usage and memory
limits for building and sending the DAQ
lists, and a busload limit for the DAQ
massages that are send on the bus. For
CAN FD we are only concerned with the
busload limit. Of course, if the extra

iCC 2013 CAN in Automation

02-15

bandwidth of CAN FD is used to send
more measure data there will be an effect
on the CPU and memory consumption.
The whole topic of busload and actual data
rates with CAN FD is complicated and will
be looked at in the next section. For the
calculation of CAN FD busload, an
assumption of the frame sizes must be
made, based on the DLC used for
the DAQ lists. The values are shown in
Figure 10.

Figure 10: CAN Frame length for raster
check

The value of DLC used depends on the
MAX_DLC_REQUIRED declaration in the
a2l file. Because the CAN frame is not
fixed due to the amount of bit stuffing, the
values used in the tables represent the
average CAN frame length.
In addition, the arbitration length of the
standard and extended CAN IDs also need
to be known. These are sent at the
arbitration CAN data rate, so the
calculation of the overall rate must be
separated to include the arbitration and
data phases.

- For standard ID arbitration is set to
30bit

- For extended ID arbitration is set to
50bit

The overall busload is calculated factored
to the arbitration bit rate. So we first
calculate the number of bits sent for each
CAN message factored to the ratio
arbitration data rate to the CAN FD data
rate.

𝐵𝑖𝑡𝑠 = # 𝐴𝑟𝑏 𝐵𝑖𝑡𝑠 +
𝐷𝑎𝑡𝑎𝑏𝑖𝑡𝑠 ∗ 𝐵𝐴𝑈𝐷𝑅𝐴𝑇𝐸
𝐶𝐴𝑁 𝐹𝐷 𝐵𝐴𝑈𝐷𝑅𝐴𝑇𝐸

We sum this for each ODT in an Event
(raster) and then sum again for every
Event (or raster) selected. This total
busload is divided by the arbitration data
rate to calculate the bus load.

The remaining changes for the XCP
specification in respect to CAN FD refer to
the a2l file changes. These are listed in
table 1.

Table 1: XCP1.2 a2l file changes for CAN FD

Entry Block Comment

MAX_DLC CAN FD Set the maximum
Message size

CAN_FD_DATA_TR
ANSFER_BAUDRA
TE

 FD Baudrate

SAMPLE_PONIT CAN FD

Added to because
new parameters
required for FD
baudrate part

SAMPLE_RATE CAN FD See above
BTL_CYCLES CAN FD See above
SJW CAN FD See above
SYNC_EDGE CAN FD See above
MAX_DLC_REQUIR
ED CAN FD See above

SECONDARY_SAM
PLE_POINT CAN FD See above

TRANCEIVER_DEL
AY_COMPENSATI
ON

CAN FD

Should not be
required as the
transceiver
themselves will
calculated this.

SAMPLE_RATE is the flexible data rate.
The entries for SAMPLE_POINT;
BLT_CYCLES and SJW are required
because the flexible data rate part can
have different values to the arbitration data
rate, because the transmission speed is
increased. The TRANSCEIVER_DELAY_
COMPENSATION refers to the delay
required to correctly read the sent bits. If
no error is set, then the bit error detection
will not function, resulting false errors
being detected. Although specified in the
XCP standard, actually this is not needed
as the transceiver itself should determine
the required delay compensation.

CAN FD effect on Data Download

One of the main interests of CAN FD up to
now has been to use its increased data
rate and payload size to improve the ECU
data download and flash times. An
illustration of the improvements is shown
in Figure 11. This shows the time to
download 500Kbytes of data using block

iCC 2013 CAN in Automation

02-16

transfer with a block size of 256Kbytes
and a message separation time (STmin) of
0sec.

Figure 11: Data download times

The data shows significant improvements
to download times can be realized, even
when 8 byte payloads are used. So
increasing the FD to 5 Mbits/s results in
over a halving of the download time.
Further improvements are made by
increasing the payload.

CAN FD effect on DAQ Measurement

DAQ (Data Acquisition) is the method
used by XCP to collect measure data.
Data is collected and sent by the slave
device at fixed time or event intervals. For
ECUs the intervals normally correspond to
internal calculation cycles. This allows
signals to be measured in the same cycle
the signal is generated or when it is used
in a software function.
The analysis concentrates on DAQ
messages having 8 and 64 byte payloads.
8 bytes represents the easiest change to
CAN FD by only changing the data rate.
64 byte payload offers the best data
transfer performance, and also offers
advantages of better data consistency. By
packing more data into a single CAN
frame, there is less risk of the data being
updated from the ECU controller before all
the data has been sent. This is a risk if
data has to be packed over several frames
and the data has to be buffered longer
before it is sent.
There are a number of possible ways CAN
FD can affect DAQ. The first is to examine

the effect of changing the CAN FD settings
which keeping the same busload limit.

Figure 12: bytes transferred maintaining
30 % busload

Figure 12 displays the amount of measure
data that can be sent if the busload is
maintained constant and the FD rate and
payload is increased. In this case the
busload is kept to 30 %. To keep the
calculation simple, we are just transferring
data in a single 10ms event. Our baseline
is a 30% busload with legacy 8 byte CAN,
which allows us to send 184 bytes every
10ms. The graph shows how many bytes
of data at 10ms represents with different
CAN FD parameters and a 30% busload.
The data transferred with legacy 8 byte
CAN is also plotted as a comparison. Of
course the legacy CAN values for the
different FD rates cannot exist. We plot
them in this way only to see the benefits of
CAN FD:
The graph shows that maintaining an 8
byte payload and increasing the flexible
data rate results in a significant increase in
data transmitted. With an FD of 5 Mbit/s
the data that can be sent is more than
doubled from 184 to 480 bytes. If the DLC
is increased to 64 bytes, then the increase
in data transferred is much greater. An FD
of 5 Mbit/s means an increase from 184
bytes for legacy 8 byte CAN to 1216 bytes,
a 6 fold increase.
This example is important if busload is the
limiting factor for XCP measure
performance. This is often the case. It
shows the increase in bandwidth with CAN
FD can bring significant improvements to
measure performance.

iCC 2013 CAN in Automation

02-17

The next example looks at the effect on
the busload when we send the same
amount of data with different CAN FD
settings. So again the starting point is a
30% busload with legacy CAN, sending all
the data every 10ms.

Figure 13: Effect on busload if the bytes
transferred remains constant

Figure 13 plots the busload with different
CAN FD parameters. With an 8 byte
payload, then even relatively low flexible
data rates have a significant effect on
busload, falling to a third of the legacy 8
byte CAN load at an FD of 5 Mbit/s. Using
64 byte payloads further reduces the
busload. This information is useful if the
limit of the measure data is ECU
performance. In this case the impact of
XCP on the CAN bus is reduced.

The last example considered here is the
possibility to measure data at faster rates
using CAN FD. This use case is becoming
more important with the adoption of
electric and hybrid motors which require
faster measure rasters then traditional
combustion engine controllers. In this
analysis, we will consider the effect on
busload sending data in very fast rasters
with different CAN FD settings.

Figure 14: busload measuring data in fast
rasters

In Figure 14 we show the busload required
to measure 64 bytes of data in 0.5ms and
0.25ms rasters. With the legacy 8 byte
CAN neither configuration is possible, with
busloads over 100%. With 8 byte DLC, this
measurement at 0.5ms is possible at FD
rates over 2.5 Mbit/s. However
measurement of 0.25ms raster is also not
possible. With the adoption of 64 byte DLC
it is possible to measure much faster
measure rasters with acceptable busloads.
So using XCP on CAN FD could result in
new applications that need higher
measure rates that were not possible
using XCP on legacy CAN.

CAN FD effect on STIM

In terms of the XCP protocol, STIM is the
same as DAQ, except it works in the
opposite direction. So the master sends
the slave data. However the use case
behind STIM is very different to DAQ, and
so the effect of CAN FD is also different.
STIM is used for rapid prototyping where
some or all of the calculations normally
done by the ECU are done by and external
processors, normal called a Rapid
ProtoTyping system (RPT)

Figure 15: Basic bypass implementation

iCC 2013 CAN in Automation

02-18

For Bypass the data has to be sent via
DAQ from the ECU to the RPT, a
calculation needs to occur and the data
then sent back to the ECU as STIM. This
sequence is shown in Figure 14. The time
taken for the complete roundtrip, the so
called latency, must be less than the task
time the RPT is replacing. The latency is
made up of the time required for the ECU
to send the data, the RPT to process it, the
time the bus needs to receive and send
the data plus the time the ECU needs to
read it back. So the bus time is only one
part of this. For this reason it is difficult to
judge the impact of CAN FD. Any
improvements in bus transport times need
to be judged in the context of the entire
system before assessing any
improvements that can be made with
CAN FD.

Summary
Described is the CAN FD format, and
XCP1.2 changes that support the CAN FD
standard. This provides benefits for data
downloading and flashing, which have
already been publicized. However CAN FD
can also bring improvements to
measurement with DAQ. It has been
shown that more data can be transmitted
at a fixed busload, or if the same amount
of data is to be sent, then the impact on
the busload is reduced. In addition is it
possible to send data at faster measure
rates using CAN FD, which could extend
the use of XCP on CAN FD buses to
applications that currently cannot use
CAN. The effect of CAN FD on STIM
applications was considered, but because
the timing of the overall system depends
on more elements than just the transport
layer, it is difficult to make firm conclusions
of the benefit.

David Gary Hickman
ETAS GmbH
Borsigstraße 14
DE-70442 Stuttgart
Tel.: +49 711 89661 833
gary.hickman@etas.com
www.etas.com

References
[1] Bosch White Paper: CAN with Flexible

Data Rate
http://www.bosch-
semiconductors.de/media/pdf_1/
canliteratur/can_fd

[2] ASAM XCP1.2 Standard
http://www.asam.net

