
iCC 2012 CAN in Automation

06-19

Model based testing and Hardware-in-the-Loop simulation
of embedded CANopen control devices

Mirko Tischer; Dietmar Widmann, Vector Informatik GmbH

CANopen is mainly used in connecting devices in embedded networks. During the
development process of the ECU (electronic control unit), the maturity of the embed-
ded system increases with testing in early stages. A good approach is to test before
the first prototype is available. Step by step, the test environment is expanded and is
able to simulate CANopen bus communication behavior. Application behavior is also
added to the test environment. This paper shows the methods available at different
development stages and their application. Starting with a simple network simulation
that just integrates EDS files, a test environment grows as the development advances.
Application behavior is added by hand-written C modules, libraries or even
MATLAB/Simulink models. Finally, the simulated ECU and finished ECU use the same
application code. To obtain a complete Hardware-in-the-Loop simulator, additional
hardware is required to simulate sensors and actors. Testing is possible in parallel to
every development step. Test procedures may range from simple interactive elements
to a fully automated test system.

	

Introduction	

Today, ECUs exhibit a high software con-
tent and place stringent requirements on
the tests to be performed (large share of
software functionality contrasts with stable
complexity in the HW environment, which
results in more testing effort in functional
tests). Increasingly shorter development
cycles practically force product manufac-
turers to reduce testing effort to a reason-
able level, but without unacceptable level
of risk to test quality. Verification and vali-
dation are playing an increasingly larger
role in the overall development process.

Given this situation, it appears necessary
not only to proceed more efficiently in the-
se areas, but to significantly shift testing
forward in time in development phases.
The advantages are obvious: de

viations in the functionality are detected
early on and can therefore also be cor-
rected earlier. With consistent implementa-
tion, this leads to more stable ECU imple-
mentations and consequently also to a
higher maturity level of the end product.

How does model-based testing contribute to
better product quality?	

Model-based testing is understood as a
technology in which testcases can be de-
rived from a model. After their execution,
these testcases can also be automatically
evaluated and documented. In all cases,
the user must work with a model and fol-
low a systematic and explicit working
method in testing.

iCC 2012 CAN in Automation

06-20

	

Figure 1: Overview – model-based testing

For model-based testing (MBT), we need
at least the following:

• Requirements / specification – Re-
quirements describe the system
and are absolutely necessary to
construct a model.

• A model based on these require-
ments – The actual creative step in
this process is implementation of
requirements in a model, which re-
quires enormous effort. In the fur-
ther course of development, the
actual software for the ECU is de-
rived from a system model (gener-
ated or – in part – manually imple-
mented). Actually, the necessary
test sequences can be derived
from the system model. However,

to permit testing of the system
model as well, a separate test
model can also be developed from
which test sequences are then de-
rived.

• Testcases and test oracle – The
testcases and the related tests
scripts can then be generated, for
the most part, from the model. In
this process, the test oracle estab-
lishes the expected test result.

• Test execution environment – To
enable execution of the tests
scripts, a runtime environment
must be provided. Naturally, this
also includes a simulation of the
CANopen ECU’s environment.

• This simulation may sometimes as-
sume great complexity in simulat-
ing the relevant hardware (sensors

and actuators), physical environ-
ment conditions and possibly even
communication with other ECUs.

iCC 2012 CAN in Automation

06-21

Just providing these components requires
a substantial amount of effort. For these
efforts, the user is rewarded with shorter
test execution times (due to automated
execution), an environment model	
 (as part
of the test execution environment) and the
ability to flexibly react to different testing
focal points.

Where does the model for a CANopen ECU
come from?	

It is easy to represent a CANopen ECU in
a model using the components shown in
Figure 2 <CANopen device model>. Unfor-
tunately, the meaningfulness of this model
is still very low, because it lacks the details
needed to describe at least minimal appli-
cation functionality. A model has the task
of describing the behavior of the modeled
system and is always kept simpler than
the modeled system – but not too simple.

	

Figure 2: Device model – CANopen

The left part of the figure (communication
over CANopen and the object dictionary)
is already modeled to a great extent by the
underlying specifications (requirements
specification and model are simultaneous-
ly covered by the DS301 or DS4xx specifi-
cation here). Unfortunately, this modeling
is insufficient to execute a complete gen-
eration of a CANopen layer. Formal de-
scriptions can certainly also be found in
specifications by CiA, e.g. via finite state
machines (FSM) and message sequence

charts. However, they do not describe the
comprehensive interrelationships between
all individual aspects, and so these interre-
lationships are also lacking in a genera-
tion. It is especially difficult to form the
model for the communication portion using
the many optional components of CANo-
pen. It is often unclear when an optional
property should or should not be used.

The question is whether it is worthwhile to
create a detailed model of the communica-
tion portion of a CANopen ECU that en

ables full generation of ECU code. This is
doubtful, because the specification, as

noted, permits too many formal gaps. A
code generation from the model (here:

system model) would therefore be associ-
ated with much effort, and in most cases it
is not economically justifiable. It would be
different if the requirements for functional
safety of the CANopen ECU would require

iCC 2012 CAN in Automation

06-22

the use of formal methods. In general,
however, CANopen communication is
handled by commercially available soft-
ware components, which users link to their
applications as a library. Then the model	

(here:	
 test	
 model)	
 for	
 the	
 communication
portion of a CANopen ECU only needs to
be detailed enough to permit generation of
the necessary testcases.

In practice, it has been demonstrated that
a statically preconfigured model is entirely
sufficient to generate the related tests and
simulation. The user only needs to input
parameters in the model (number of PDOs
and layout of the object dictionary, etc.).

For the application portion of the CANopen
ECU, the work process also begins with
requirements in a specification, and the
relevant models are constructed from this
information. Actually, this is ALWAYS a
manual process that requires tremendous
know-how. At any rate, each individual
requirement must be evaluated and find a
place in the model. Often, this activity is
already part of the software development
process for the relevant ECU, and the re-
sulting models can also be used to create
the test sequences.

Integration levels and execution environ-
ment	

As the integration level (model, compo-
nent, software, ECU) changes during de-
velopment, the requirements for the indi-
vidual test execution environment also
change. The following integration levels
are distinguished here:

• Model-in-the-Loop (MiL): The mod-
el (system model, executable spec-
ification) is subjected to a test. That
is, input vectors are automatically
changed, and observations are
made of whether the output vectors
remain within an expected range.
Many modeling environments to-

day already offer the capability of
executing tests on this level.

• Software-in-the-Loop (SiL): On this
integration level, the implemented
algorithms can be tested on the
code level. The code of the individ-
ual software components is exe-
cuted on the simulation platform.
Often, it is a mixture of generated
code, hand-written code and driver
or function libraries.

• Processor-in-the-Loop (PiL): The
code is now executed on the target
processor or on an ‘instruction set
simulator’. The system environ-
ment is often still simulated on this
integration level as well.

• Hardware-in-the-Loop (HiL): The
transition from Processor-in-the-
Loop Integration is fluid. Now the
physical environment is also repre-
sented via real digital I/O or PWM
(pulse width modulation) signals.

iCC 2012 CAN in Automation

06-23

	

	

	

iCC 2012 CAN in Automation

06-24

Figures 3 through 5 – Integration levels
(indicates requirements for the test adapt-
er)

To efficiently conduct tests on the given
level, a very flexible test execution envi-
ronment must be provided. The following
aspects present a special challenge:

• The test sequences used on the
specific integration levels should
be reusable. Therefore, the test
sequences must be convertible, or
suitable interfaces must be availa-
ble for bypassing the different lev-
els.

• It must be possible to adapt test
sequences to a wide variety of test
adapters. Here, it makes sense to
support multiple programming lan-
guages, so that adjustments can
be made flexibly and cost-
effectively by means of interface
changes.

• To attain reproducible results, it
must be possible to automate all
test sequences.

• The execution environment must
lend itself to a high level of configu-
rability by parameters. The ability
to generate the entire environment
or parts of the environment is a
good idea.

Architecture of the test execution environ-
ment for CANopen development	

As can already be seen from the device
model (Figure 2), in a CANopen ECU the
application and communication portion
(with process data objects (PDO) and ser-
vice data objects (SDO)) are loosely inter-
related via the object dictionary. Therefore,
it is possible for the developer to begin
with the design and implementation of the
application portion without having to deal
with CANopen in detail. However, the fol-
lowing points must be considered so that
the execution environment can be used
relatively simply on the SiL and HiL inte-
gration levels:

• The NMT state information of the
communication layer should be
evaluated. Even if this aspect does
not entirely or clearly originate from
CANopen specifications, it is still
necessary to have an application
react appropriately to changes in
the communication state. This
makes it possible to couple the fi-
nite state machines (FSM) to one
another.

• Access to all application parame-
ters that are located in the object
dictionary should be encapsulated
so that these parameters can be
easily simulated.

• All accesses to hardware should be
simulated via a hardware abstrac-
tion layer (HAL).

iCC 2012 CAN in Automation

06-25

•

	

Figure 6: Extended CANopen device model

This implicitly extends the device model by
adding the interfaces shown in Figure 6
(CAN driver; CANopen COTS component;
HAL adapter; object dictionary (OD) map-
per; application). As a result, the applica-
tion can now be executed as a SiL on a
simulation platform (under Microsoft Win-
dows on a PC), and functional tests can
be executed. The test execution environ-
ment even accepts models created with
MATLAB/Simulink. Often, however, the
application software is created as a library

(dynamic link library; DLL) and is added to
the test execution environment via the
provided interfaces (application program-
ming interface for the C language; C-API).
Then the simulation environment includes
full CANopen functionality, which can also
cover a rest-of-bus simulation (network of
multiple ECUs) and an abstraction of the
physical environment. The adaptation lay-
ers (adapters) indicate changes to the rel-
evant parameters, and the application us-
es the related values.

	

	

Figure 7 (Sample code): Event function for pressure change and polling of an environment
variable.

iCC 2012 CAN in Automation

06-26

The application can now be completed,
step by step, by adding other components
that contain additional algorithms and con-
trol sequences, and a simple integration in
the test execution environment is possible
at each step.

The CANopen functionality of the simula-
tion environment must be adapted to the
specific requirements of the ECU under
development. For this purpose, a configu-
ration tool is used that can also process
formats defined for CANopen. This always
begins with an electronic description of the
CANopen ECU by an electronic data sheet
(EDS). This yields a configuration of CAN-
open communication in device configura-
tion format (DCF). The layout of the object
dictionary and configuration of the PDOs
can be seen in this configuration. This in-
formation is used to generate the interfac-
es needed to interface to the application
components under development.

Once the application has been prepared to
this stage, the next step is to link the
CANopen protocol stack. This is commer-
cial-off-the-shelf (COTS) software, which
already implements a whole series of
CANopen services. To also integrate the-
se components into a SiL configuration
within the test execution environment, it is
of course important to encapsulate all ac-
cesses to the object dictionary, hardware
accesses and access to CAN messages
via interfaces (refer to Figures 3 - 5; CAN
driver; HAL adapter; object dictionary (OD)
mapper). The application and CANopen
components are combined into a library
and are inserted in the test execution envi-
ronment via the provided interfaces. The
CANopen simulation must now be adapted
accordingly, and it now only contains any
rest-of-bus simulation. This adaptation is
made with tool support, and the tool re-
generates relevant interfaces.

Once the hardware for the CANopen ECU
is available, the software is integrated –
which consists of the application and
CANopen services. Naturally, the test ex-
ecution environment must also be adapted
to the required degree. The previously
simulated physical environment is now
made available via real hardware.

The tests to be executed now run in a HiL
configuration and also make it possible to
simulate aspects with real-time relevance.

What else does the test execution envi-
ronment give us? In principle, all paths for
ECU testing merge together here. In addi-
tion to the environment simulation, other
aspects of primary significance are test
execution control and the representation of
test results. While the tester can activate
and start the available test sequences in
test flow control, results representation
ensures that test results (output as XML
and HTML) are shown in a well organized
and easy to understand way. In addition,
all details of a test run are recorded in log
files – including the bus communication.

How are the tests specified?	

Along with semi-automated sequences
(where interaction with the user is neces-
sary during the test run, e.g. to input val-
ues), which are supported by special con-
figurable dialogs, another capability of
primary interest here is the specification of
fully automated test sequences. To offer
strong support for reusability, test se-
quences are organized into test modules.
These test modules may exist in different
formats, where these formats only differ in
their syntax. The structure of the test
modules is always uniform. The test exe-
cution environment supports efficient crea-
tion of tests by a whole series of Help
functions (test service library), which per-
mit generation of signal waveforms

iCC 2012 CAN in Automation

06-27

(via stimuli functions) or simple access to
CAN messages.

For maximum flexibility in creating test
sequences, C# (.NET) is directly support-
ed in addition to a manufacturer-specific
C-like language. There is also the option
of specifying very simple test primitives via
XML files. Here, the XML file represents a

pattern that is provided with test data and
can be executed directly within a

test module. The advantage of this ap-
proach is obvious, but it is also possible to
create the test specification directly in a
human-readable format by means of a
suitable XSLT transformation.

	

	

Figure 8 (sample code) CAPL vs. XML

The test modules themselves can be writ-
ten by hand or be generated with suitable
generators. Authoring tools are also avail-
able, which support creation of the mod-
ules (filling out of XML patterns; genera-
tion of C# modules from graphic represen-
tations).

Summary	

This paper shows the different aspects of
model-based testing based on the exam-
ple of a CANopen ECU. The primary focus
here is on creating the simulation envi-
ronment, because this is the area where
enormous efforts must always be antici-
pated. It was shown that a suitable archi-
tecture of the test execution environment
enables reuse of test sequences and
components of the simulation for different
integration levels.

iCC 2012 CAN in Automation

06-28

	

	

Figure	
 9:	
 Test	
 Execution	
 Environment	
 CANoe	

Sources:	

Peter Liggesmeyer: Software-Qualität -
Testen, Analysieren und Verifizieren von
Software (2. Aufl.). Spektrum Akademi-

scher Verlag 2009
Kai Schmidt, Vector Informatik GmbH:
CANopen tests – automatically genera-
ted,Proceedings ICC2008

Mirko Tischer
Vector Informatik GmbH
Prototyping and testing CANopen systems
Ingersheimer Str. 24
DE – 70499 Stuttgart
Tel: +49 – 711 – 80670-2152
fax: +49 – 711 – 80670 – 249
mirko.tischer@vector.com
www.vector.com

	

