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Model based testing and Hardware-in-the-Loop simulation 
of embedded CANopen control devices 
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CANopen is mainly used in connecting devices in embedded networks. During the 
development process of the ECU (electronic control unit), the maturity of the embed-
ded system increases with testing in early stages. A good approach is to test before 
the first prototype is available. Step by step, the test environment is expanded and is 
able to simulate CANopen bus communication behavior. Application behavior is also 
added to the test environment. This paper shows the methods available at different 
development stages and their application. Starting with a simple network simulation 
that just integrates EDS files, a test environment grows as the development advances. 
Application behavior is added by hand-written C modules, libraries or even 
MATLAB/Simulink models. Finally, the simulated ECU and finished ECU use the same 
application code. To obtain a complete Hardware-in-the-Loop simulator, additional 
hardware is required to simulate sensors and actors. Testing is possible in parallel to 
every development step. Test procedures may range from simple interactive elements 
to a fully automated test system. 

	
  

Introduction	
  

Today, ECUs exhibit a high software con-
tent and place stringent requirements on 
the tests to be performed (large share of 
software functionality contrasts with stable 
complexity in the HW environment, which 
results in more testing effort in functional 
tests). Increasingly shorter development 
cycles practically force product manufac-
turers to reduce testing effort to a reason-
able level, but without unacceptable level 
of risk to test quality. Verification and vali-
dation are playing an increasingly larger 
role in the overall development process.  

Given this situation, it appears necessary 
not only to proceed more efficiently in the-
se areas, but to significantly shift testing 
forward in time in development phases. 
The advantages are obvious: de 

 

viations in the functionality are detected 
early on and can therefore also be cor-
rected earlier. With consistent implementa-
tion, this leads to more stable ECU imple-
mentations and consequently also to a 
higher maturity level of the end product. 

How does model-based testing contribute to 
better product quality?	
  

Model-based testing is understood as a 
technology in which testcases can be de-
rived from a model. After their execution, 
these testcases can also be automatically 
evaluated and documented. In all cases, 
the user must work with a model and fol-
low a systematic and explicit working 
method in testing.  
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Figure 1: Overview – model-based testing 

For model-based testing (MBT), we need 
at least the following: 

• Requirements / specification – Re-
quirements describe the system 
and are absolutely necessary to 
construct a model. 

• A model based on these require-
ments – The actual creative step in 
this process is implementation of 
requirements in a model, which re-
quires enormous effort. In the fur-
ther course of development, the 
actual software for the ECU is de-
rived from a system model (gener-
ated or – in part – manually imple-
mented). Actually, the necessary 
test sequences can be derived 
from the system model. However, 

to permit testing of the system 
model as well, a separate test 
model can also be developed from 
which test sequences are then de-
rived. 

• Testcases and test oracle – The 
testcases and the related tests 
scripts can then be generated, for 
the most part, from the model. In 
this process, the test oracle estab-
lishes the expected test result. 

• Test execution environment – To 
enable execution of the tests 
scripts, a runtime environment 
must be provided. Naturally, this 
also includes a simulation of the 
CANopen ECU’s environment.  

• This simulation may sometimes as-
sume great complexity in simulat-
ing the relevant hardware (sensors 

and actuators), physical environ-
ment conditions and possibly even 
communication with other ECUs. 
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Just providing these components requires 
a substantial amount of effort. For these 
efforts, the user is rewarded with shorter 
test execution times (due to automated 
execution), an environment model	
  (as part 
of the test execution environment) and the 
ability to flexibly react to different testing 
focal points. 

Where does the model for a CANopen ECU 
come from?	
  

It is easy to represent a CANopen ECU in 
a model using the components shown in 
Figure 2 <CANopen device model>. Unfor-
tunately, the meaningfulness of this model 
is still very low, because it lacks the details 
needed to describe at least minimal appli-
cation functionality. A model has the task 
of describing the behavior of the modeled 
system and is always kept simpler than 
the modeled system – but not too simple. 

	
  

Figure 2: Device model – CANopen 

The left part of the figure (communication 
over CANopen and the object dictionary) 
is already modeled to a great extent by the 
underlying specifications (requirements 
specification and model are simultaneous-
ly covered by the DS301 or DS4xx specifi-
cation here). Unfortunately, this modeling 
is insufficient to execute a complete gen-
eration of a CANopen layer. Formal de-
scriptions can certainly also be found in 
specifications by CiA, e.g. via finite state 
machines (FSM) and message sequence 

charts. However, they do not describe the 
comprehensive interrelationships between 
all individual aspects, and so these interre-
lationships are also lacking in a genera-
tion. It is especially difficult to form the 
model for the communication portion using 
the many optional components of CANo-
pen. It is often unclear when an optional 
property should or should not be used. 

The question is whether it  is worthwhile to 
create a detailed model of the communica-
tion portion of a CANopen ECU that en

ables full generation of ECU code. This is 
doubtful, because the specification, as  

noted, permits too many formal gaps. A 
code generation from the model (here: 

system model) would therefore be associ-
ated with much effort, and in most cases it 
is not economically justifiable. It would be 
different if the requirements for functional 
safety of the CANopen ECU would require 
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the use of formal methods. In general, 
however, CANopen communication is 
handled by commercially available soft-
ware components, which users link to their 
applications as a library. Then the model	
  
(here:	
   test	
   model)	
   for	
   the	
   communication 
portion of a CANopen ECU only needs to 
be detailed enough to permit generation of 
the necessary testcases. 

In practice, it has been demonstrated that 
a statically preconfigured model is entirely 
sufficient to generate the related tests and 
simulation. The user only needs to input 
parameters in the model (number of PDOs 
and layout of the object dictionary, etc.). 

For the application portion of the CANopen 
ECU, the work process also begins with 
requirements in a specification, and the 
relevant models are constructed from this 
information. Actually, this is ALWAYS a 
manual process that requires tremendous 
know-how. At any rate, each individual 
requirement must be evaluated and find a 
place in the model. Often, this activity is 
already part of the software development 
process for the relevant ECU, and the re-
sulting models can also be used to create 
the test sequences.  

Integration levels and execution environ-
ment	
  

As the integration level (model, compo-
nent, software, ECU) changes during de-
velopment, the requirements for the indi-
vidual test execution environment also 
change. The following integration levels 
are distinguished here: 

• Model-in-the-Loop (MiL): The mod-
el (system model, executable spec-
ification) is subjected to a test. That 
is, input vectors are automatically 
changed, and observations are 
made of whether the output vectors 
remain within an expected range. 
Many modeling environments to-

day already offer the capability of 
executing tests on this level. 

• Software-in-the-Loop (SiL): On this 
integration level, the implemented 
algorithms can be tested on the 
code level. The code of the individ-
ual software components is exe-
cuted on the simulation platform. 
Often, it is a mixture of generated 
code, hand-written code and driver 
or function libraries. 

• Processor-in-the-Loop (PiL): The 
code is now executed on the target 
processor or on an ‘instruction set 
simulator’. The system environ-
ment is often still simulated on this 
integration level as well. 

• Hardware-in-the-Loop (HiL): The 
transition from Processor-in-the-
Loop Integration is fluid. Now the 
physical environment is also repre-
sented via real digital I/O or PWM 
(pulse width modulation) signals. 
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Figures 3 through 5 – Integration levels 
(indicates requirements for the test adapt-
er) 

To efficiently conduct tests on the given 
level, a very flexible test execution envi-
ronment must be provided. The following 
aspects present a special challenge: 

• The test sequences used on the 
specific integration levels should 
be reusable. Therefore, the test 
sequences must be convertible, or 
suitable interfaces must be availa-
ble for bypassing the different lev-
els. 

• It must be possible to adapt test 
sequences to a wide variety of test 
adapters. Here, it makes sense to 
support multiple programming lan-
guages, so that adjustments can 
be made flexibly and cost-
effectively by means of interface 
changes. 

• To attain reproducible results, it 
must be possible to automate all 
test sequences. 

• The execution environment must 
lend itself to a high level of configu-
rability by parameters.  The ability 
to generate the entire environment 
or parts of the environment is a 
good idea. 

Architecture of the test execution environ-
ment for CANopen development	
  

As can already be seen from the device 
model (Figure 2), in a CANopen ECU the 
application and communication portion 
(with process data objects (PDO) and ser-
vice data objects (SDO)) are loosely inter-
related via the object dictionary. Therefore, 
it is possible for the developer to begin 
with the design and implementation of the 
application portion without having to deal 
with CANopen in detail. However, the fol-
lowing points must be considered so that 
the execution environment can be used 
relatively simply on the SiL and HiL inte-
gration levels: 

• The NMT state information of the 
communication layer should be 
evaluated. Even if this aspect does 
not entirely or clearly originate from 
CANopen specifications, it is still 
necessary to have an application 
react appropriately to changes in 
the communication state. This 
makes it possible to couple the fi-
nite state machines (FSM) to one 
another. 

• Access to all application parame-
ters that are located in the object 
dictionary should be encapsulated 
so that these parameters can be 
easily simulated.  

• All accesses to hardware should be 
simulated via a hardware abstrac-
tion layer (HAL). 
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Figure 6: Extended CANopen device model 

This implicitly extends the device model by 
adding the interfaces shown in Figure 6 
(CAN driver; CANopen COTS component; 
HAL adapter; object dictionary (OD) map-
per; application). As a result, the applica-
tion can now be executed as a SiL on a 
simulation platform (under Microsoft Win-
dows on a PC), and functional tests can 
be executed. The test execution environ-
ment even accepts models created with 
MATLAB/Simulink. Often, however, the 
application software is created as a library 

(dynamic link library; DLL) and is added to 
the test execution environment via the 
provided interfaces (application program-
ming interface for the C language; C-API). 
Then the simulation environment includes 
full CANopen functionality, which can also 
cover a rest-of-bus simulation (network of 
multiple ECUs) and an abstraction of the 
physical environment. The adaptation lay-
ers (adapters) indicate changes to the rel-
evant parameters, and the application us-
es the related values. 

	
  

	
  

Figure 7 (Sample code): Event function for pressure change and polling of an environment 
variable. 
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The application can now be completed, 
step by step, by adding other components 
that contain additional algorithms and con-
trol sequences, and a simple integration in 
the test execution environment is possible 
at each step. 

The CANopen functionality of the simula-
tion environment must be adapted to the 
specific requirements of the ECU under 
development. For this purpose, a configu-
ration tool is used that can also process 
formats defined for CANopen. This always 
begins with an electronic description of the 
CANopen ECU by an electronic data sheet 
(EDS). This yields a configuration of CAN-
open communication in device configura-
tion format (DCF). The layout of the object 
dictionary and configuration of the PDOs 
can be seen in this configuration. This in-
formation is used to generate the interfac-
es needed to interface to the application 
components under development. 

Once the application has been prepared to 
this stage, the next step is to link the 
CANopen protocol stack. This is commer-
cial-off-the-shelf (COTS) software, which 
already implements a whole series of 
CANopen services. To also integrate the-
se components into a SiL configuration 
within the test execution environment, it is 
of course important to encapsulate all ac-
cesses to the object dictionary, hardware 
accesses and access to CAN messages 
via interfaces (refer to Figures 3 - 5; CAN 
driver; HAL adapter; object dictionary (OD) 
mapper). The application and CANopen 
components are combined into a library 
and are inserted in the test execution envi-
ronment via the provided interfaces. The 
CANopen simulation must now be adapted 
accordingly, and it now only contains any 
rest-of-bus simulation. This adaptation is 
made with tool support, and the tool re-
generates relevant interfaces. 

Once the hardware for the CANopen ECU 
is available, the software is integrated – 
which consists of the application and 
CANopen services. Naturally, the test ex-
ecution environment must also be adapted 
to the required degree. The previously 
simulated physical environment is now 
made available via real hardware.  

The tests to be executed now run in a HiL 
configuration and also make it possible to 
simulate aspects with real-time relevance. 

What else does the test execution envi-
ronment give us? In principle, all paths for 
ECU testing merge together here. In addi-
tion to the environment simulation, other 
aspects of primary significance are test 
execution control and the representation of 
test results. While the tester can activate 
and start the available test sequences in 
test flow control, results representation 
ensures that test results (output as XML 
and HTML) are shown in a well organized 
and easy to understand way. In addition, 
all details of a test run are recorded in log 
files – including the bus communication. 

How are the tests specified?	
  

Along with semi-automated sequences 
(where interaction with the user is neces-
sary during the test run, e.g. to input val-
ues), which are supported by special con-
figurable dialogs, another capability of 
primary interest here is the specification of 
fully automated test sequences. To offer 
strong support for reusability, test se-
quences are organized into test modules. 
These test modules may exist in different 
formats, where these formats only differ in 
their syntax. The structure of the test 
modules is always uniform. The test exe-
cution environment supports efficient crea-
tion of tests by a whole series of Help 
functions (test service library), which per-
mit generation of signal waveforms 
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(via stimuli functions) or simple access to 
CAN messages. 

For maximum flexibility in creating test 
sequences, C# (.NET) is directly support-
ed in addition to a manufacturer-specific 
C-like language. There is also the option 
of specifying very simple test primitives via 
XML files. Here, the XML file represents a 

pattern that is provided with test data and 
can be executed directly within a  

test module. The advantage of this ap-
proach is obvious, but it is also possible to 
create the test specification directly in a 
human-readable format by means of a 
suitable XSLT transformation. 

	
  

	
  

Figure 8 (sample code) CAPL vs. XML 

The test modules themselves can be writ-
ten by hand or be generated with suitable 
generators. Authoring tools are also avail-
able, which support creation of the mod-
ules (filling out of XML patterns; genera-
tion of C# modules from graphic represen-
tations). 

Summary	
  

This paper shows the different aspects of 
model-based testing based on the exam-
ple of a CANopen ECU. The primary focus 
here is on creating the simulation envi-
ronment, because this is the area where 
enormous efforts must always be antici-
pated.  It was shown that a suitable archi-
tecture of the test execution environment 
enables reuse of test sequences and 
components of the simulation for different 
integration levels. 
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Figure	
  9:	
  Test	
  Execution	
  Environment	
  CANoe	
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