
iCC 2012 CAN in Automation

05-10

The CAN networking subsystem of the Linux kernel	

Dr. Oliver Hartkopp, Volkswagen AG

Since Linux 2.6.25 (issued 2008-04-17) the Linux mainline kernel supports the network
protocol family PF_CAN providing standardized programming interfaces for CAN
users and CAN driver developers. This paper provides an overview of the
implemented technologies and challenges to integrate the Controller Area Network
into a non-real-time multiuser/multitasking operating system. Due to the standardized
network driver model for CAN hardware a wide range of different CAN controllers and
System-on-Chip CAN IP cores are supported by Linux out-of-the-box. In opposite to
usual embedded CAN ECUs the Linux networking system is designed to handle
multiple CAN applications using multiple CAN busses at the same time. The
integration of the CAN infrastructure into the networking stack allows to implement
CAN-specific transport protocols like ISO 15765-2 or high-performance CAN frame
gateways inside the operating system context. Finally the paper discusses solutions
for expected prioritization issues when executing multiple CAN applications and
summarizes requirements for Linux-preferred CAN controller concepts.

Today the CAN bus is used in a wide
range of control applications. Usually the
content based addressing is practiced to
transfer information by sending single
CAN frames. In the automotive context
cyclic transmissions are used to detect the
absence of the data source within a
reasonable time. E.g. when the cyclic
status information of a CAN controlled
media player is not received every 200ms
the media player can be disabled in the
HMI of the vehicles Infotainment system.
Additionally so-called CAN transport
protocols are used in the vehicles on-
board diagnostics (OBD) to provide a
virtual point-to-point connection between
the diagnosis tester and the CAN ECU.
With help of these CAN transport protocols
(like ISO 15765-2 [1]) PDU length up to
4095 bytes can be transferred via CAN
which is used e.g. for firmware updates.

Character device drivers for CAN

Having these two use cases in mind the
known CAN drivers for Linux were not able
to fulfill any of them appropriately in 2002.
Due to the fact that known CAN drivers
based on the character device driver
model the interface to the CAN controller
was simple and direct – as known from
character based serial drivers. The various
CAN character device drivers presented a
more or less abstract programming
interface that is specific to CAN controller
capabilities or vendor requirements.

Especially the functionality provided by the
CAN driver is reduced to apply CAN
identifier filters.

To implement content filters for the
payload of cyclic CAN messages these
messages had to be processed in user-
space context. E.g. if only a state change
in the payload was relevant for the
application each received CAN message
had to be transferred from kernel-space
into user-space for a comparison with the
former one.

The implementation of a CAN transport
protocol has to fulfill restrictive timing
requirements down to a few milliseconds.
This cannot be ensured in the user-space
context where several processes in a
multitasking system share the same CPU.
Depending on the system load the
processes get their CPU time regulated by
the system scheduler and the resolution of
the system timer. The common alternative
to implement CAN transport protocols for
multitasking operating systems is to have
a separated embedded CAN CPU or to
use a real-time variant of the selected
multitasking operating system (OS).

CAN networking in Linux

The point-to-point network communication
in multitasking operating systems is well
known from the Internet protocol (IP)
communication. Different connection

iCC 2012 CAN in Automation

05-11

oriented and connectionless protocols
based on the IP like the TCP and UDP are
state of the art in common operating
systems. Adapting this internet networking
technology to realize the similar
requirements of CAN transport protocols
leads to an implementation of the CAN
access inside the OS network stack.

This approach has several advantages
over the formerly described character
device driver model:

• Standard programming interfaces for

system calls (‘network sockets’)
• Standard network driver model known

from Ethernet drivers
• Established abstraction layers in the

network stack
• Communication protocols implemented

inside the operating system context
• Multiuser access to the network

The definition of a network device driver
interface for the Controller Area Network is
the first step to unify the CAN bus access.
As known from Ethernet networking the
driver abstraction allows the replacement
of networking hardware without modifying
the user applications like e-mail clients or
web browsers. On the other hand the CAN
network device definition allows the
hardware vendor to focus on the driver
development without being in charge to
specify and implement user-space
programming interfaces and tools.

The direct access to network devices can
be performed with a privileged access to
the PF_PACKET socket interface. But
using the PF_PACKET protocol family
sockets for CAN network devices has
some vital drawbacks:

1. Privileged access rights are needed

(Administrator only)
2. No full network transparency for local

CAN applications (See [2])
3. No efficient traffic filtering based on

CAN identifiers
4. No integration of CAN specific

(transport) protocols

Especially the missing network
transparency (point 2) turns out as a
knock-out criterion in a multiuser

environment, as different CAN applications
would have a different view of the existing
CAN bus traffic [2].

Network protocol family PF_CAN

To overcome with the limitations caused
by accessing CAN network devices with
PF_PACKET sockets a new protocol
family for the Controller Area Network has
been created. The integration of this
PF_CAN protocol family into the Linux
network stack can be derived from existing
network protocol families like DECnet,
Appletalk or AX.25 that also use the Linux
networking infrastructure with different
networking hardware and protocols.

To establish a separate data path for CAN
messages and CAN devices the data
buffers and network devices are identified
with new type definitions:

• ETH_P_CAN identifies network data

buffers that contain CAN messages
• ARPHRD_CAN identifies CAN network

devices that handles network data
buffers marked as ETH_P_CAN type

Based in these definitions a new PF_CAN
protocol family implementation can
register itself to be responsible for
ETH_P_CAN marked buffers containing
CAN messages.

Together with the PF_CAN/AF_CAN value
definitions and a new CAN socket address
structure the missing link for the socket
programming interface for user-space
applications is established. From this point
the protocol family PF_CAN provides a
framework that manages the CAN data
flow from the user to the CAN network
driver and vice versa.

Inside the operating system PF_CAN
offers programming interfaces for various
CAN based protocols. Comparable to UDP
and TCP being different protocols of the
protocol family PF_INET for internet
protocol networking new CAN relevant
functionalities can be hosted inside the
PF_CAN framework. The different CAN
protocols can be accessed from user-
space applications with different protocol
numbers that are functional available

iCC 2012 CAN in Automation

05-12

when a CAN protocol implementation
registers itself at the PF_CAN framework.

To provide a multiuser access to CAN
traffic the PF_CAN core offers internal
functions to CAN protocol implementations
to send and receive CAN frames [3]:

can_send()
Send a data buffer containing a CAN
frame to a CAN device. Performs sanity
checks for CAN frames (e.g. dlc) and
ensures the local echo functionality.

can_rx_register()
Register a callback function that is
executed on the reception of a CAN
identifier that matches the given
mask/value filter.

can_rx_unregister()
Remove a formerly registered
subscription.

Depending on the given mask/value filter
different filtersets are used to reduce the
CPU consumption when checking the
registered subscriptions at runtime. The
per-interface created filtersets are checked
in a software-interrupt on every CAN
frame reception. Due to the described
multiuser requirement the CAN drivers
intentionally do not support any system
wide CAN identifier filters. The
performance of the software-interrupt
based CAN filters has been evaluated in
[4].

CAN Protocols in PF_CAN

The protocol CAN_RAW offers a similar
programming interface as known from the
CAN character device drivers. Analogue to
opening a character device file in Linux
(e.g. /dev/can0) the CAN application
programmer creates a network socket and
reads/writes specific data structures
representing CAN frames.

Additional to the fact that multiple
instances of CAN_RAW sockets can be
created at the same time several different
CAN identifier filters can be applied to
each created socket separately. Due to
the different filters for each CAN_RAW
socket a specific view to the selected CAN

bus traffic can be archived and separately
handled by different applications and
users on the system.

The CAN_RAW sockets identifier filters
reference directly to the per-interface
filtersets provided by the PF_CAN
framework. The simple callback
registration delivers the subscribed CAN
frames directly to the requesting socket
instance to be read by the user-space
CAN application.

In automotive networks the CAN
messages are not only used to transfer
signal values in the CAN frames payload.
Sending CAN frames periodically e.g.
every 200ms allows to detect failures of
the originating CAN node. This mode of
operation has two drawbacks regarding
the bus load and the message processing.
Even when the reception of CAN traffic is
reduced by filters and/or message buffers
the CAN frame payload needs to be
checked whether the relevant signal has
changed.

To reduce the effort for payload content
filtering the CAN broadcast manager
protocol (CAN_BCM) has been integrated
into PF_CAN. The CAN_BCM is a
programmable content filter and timeout
handler for incoming CAN frames and can
also manage the sending of cyclic
messages in operating system context.
Due to the Linux high resolution timers the
precise sending of messages is
independent from process scheduling. The
content filter that checks changes in the 64
bit payload is processed in the software
interrupt at CAN frame reception time to
ensure that only relevant changes are
passed to the CAN application in user-
space.

CAN_BCM transmission path functions:

• Cyclic transmission of a CAN message

using a given interval time
• Redefinition of CAN message content

and interval timers at runtime
• Counting of performed intervals with

automatic switching to a second
interval time

iCC 2012 CAN in Automation

05-13

• Immediate transmission of changed
CAN message content with/without
starting the timer interval

• Single transmission of CAN messages

BCM receive path functions:

• Receive filters to check changes in

relevant CAN message elements
(payload, data length code)

• Receive filters for single CAN
identifiers (no content matching)

• Receive filters for multiplex CAN
messages (e.g. with indices inside the
CAN message payload)

• Receive filters for monitoring the data
length code of the CAN message

• Respond to receive transmission
request (RTR) CAN messages

• Time-out-monitoring of CAN messages
• Reduction of the update rate for

content filter changes messages
(throttling)

Depending on the use case payload
content filtering and throttling can provide
a significant reduction of the system load
(see [5] p. 102-103). Additionally the
comfortable CAN_BCM socket
programming interface reduces the
complexity of the CAN application and
supersedes a complex and imprecise
timer handling in user-space.

CAN transport protocols in OS context

Known solutions that implement CAN
transport protocols use an embedded CAN
processor in the CAN hardware interface
to ensure the ambitious protocol timing
requirements. The availability of Linux high
resolution timers for the precise sending of
CAN messages lead to the question if
these timing requirements of CAN
protocols can be handled inside the
PF_CAN framework. A public available
implementation [6] of the ISO 15765-2
CAN transport protocol [1] has been
evaluated and compared to a commercial
diagnosis tool [7]. It turned out that
minimum response time of the Linux
implementation was at least twice the time
and in the worst case ten times longer
than with the embedded CAN CPU
solution. As the 4ms delay of the worst

case scenario was still covered by the
specified protocol timeout of 1000ms the
PF_CAN based implementation is conform
to ISO 15765-2. Besides the measured
overall timing ranges the open source
implementation processed the CAN
protocol messages two times faster than
the embedded solution (average values).

CAN frame routing using PF_CAN

In internet protocol networking the routing
and forwarding of IP traffic through
different network devices is common
practice. The routing and modifying
operations for IP packets are based on IP
addressing schemata. As the qualified
CAN addressing is based on the CAN
identifier and the CAN bus interface the
existing routing implementations inside the
operating system context are not suitable
for the Controller Area Network.

Attempts to route CAN frames efficiently
with user-space applications like candump
[8] failed through the existing process
scheduling which lead to drops and non-
deterministic delays depending in the size
of the per-socket receive buffer size.

To integrate an efficient CAN message
routing in Linux the created CAN gateway
(CAN_GW) makes use of the PF_CAN
filter subscription infrastructure. The
registered filters trigger callback functions
in the CAN gateway where the received
CAN frames can optionally be modified
before they are sent to the outgoing CAN
interface. The one-hop CAN message
forwarding supports the following on-the-
fly modifications of the CAN frame
elements CAN-ID, CAN-DLC, CAN-DATA:

1. AND: logical ‘and’ element with value
2. OR: logical ‘or’ element with value
3. XOR: logical ‘xor’ element with value
4. SET: set element to new value

After performing one or more of these
optional CAN frame modifications in the
described order a potentially corrupted
payload data checksum can be built on
demand. Additional to a simple XOR
checksum calculation for a given data set,
three CRC8 profiles can be selected that
can calculate a CRC8 value based on an

iCC 2012 CAN in Automation

05-14

individual 256 byte CRC table. With this
functionality the CAN gateway is able to
create AUTOSAR End-to-End-Library [9]
compliant CAN messages on-the-fly even
after modification.

The implementation of the CAN gateway is
optimized towards performance as the
optional modification and checksum
calculating operations are executed in the
software interrupt context. Detailed
performance measurements of CAN_GW
have been made [4]. The CAN gateway
implements the Linux routing capability for
the protocol family PF_CAN and supports
the netlink configuration interface [10] that
is also used for the routing configuration of
internet protocol data.

CAN frame traffic shaping

Due to the new multiuser capabilities of
the CAN networking implementation in
Linux a new challenge to manage the host
access to a single CAN bus medium
arises. For example a CAN application A
sends a status information on CAN-ID
0x123 every 200ms. Application B sends a
4095 byte PDU via ISO 15765-2 without a
tx delay requested from the
communication partner. This leads to an
expected transmission sequence like:

deltaT ID data
0.200 0x123 00 00 00 20
0.200 0x123 00 00 00 21
0.200 0x123 00 00 00 22
0.100 0x730 02 03 04 05 06 07 08 09
0.001 0x730 02 03 04 05 06 07 08 09
0.001 0x730 02 03 04 05 06 07 08 09
0.001 0x730 02 03 04 05 06 07 08 09
0.001 0x730 02 03 04 05 06 07 08 09
(… 500 CAN frames later …)
0.001 0x730 02 03 04 05 06 07 08 09
0.001 0x730 02 03 04 05 06 07 08 09
0.001 0x123 00 00 00 23
0.001 0x123 00 00 00 24
0.001 0x123 00 00 00 25
0.001 0x123 00 00 00 26
0.200 0x123 00 00 00 27
0.200 0x123 00 00 00 28

Due to the fact that the ISO 16765-2
protocol pushed more than 500 CAN
frames en-bloc into the CAN network
device queue the relevant status

information is not send on the CAN bus for
the ISO-TP frames transmission time.
Depending on the used bitrate the block
transfer time the cyclic status information
can be inhibited which leads to
inconsistencies and timeout errors in the
data sink.

The described data flow effect is a known
problem in internet protocol networking
too. To be able to browse the web in a
smooth way while having peer-to-peer
data communication the traffic can be
controlled depending on its content. This
so-called ‘traffic shaping’ for peer-to-peer
connections is part of a traffic control
framework inside the Linux networking.
The various traffic control capabilities to
prioritize, throttle or drop packets are
designed to handle internet protocol traffic
and are not aware of Controller Area
Network identifiers. Therefore the
classifiers to sort and separate packets
into network queues have been extended
with a new CAN classifier implementation.

This CAN classifier support enables the
usage of the entire traffic control (TC)
capabilities of the Linux networking
subsystem [11] although not every
queueing discipline is suitable for CAN use
cases. The traffic control configuration
requires administrative access rights
which concentrate the host configuration
to a single point. This allows setting up the
local CAN node fulfilling the requirements
of the different CAN applications and the
other CAN bus participants.

This setup can be used to solve the initial
example with the modified ‘tc’ tool [12]:

create a can0 prio traffic control handle
$ tc qdisc add dev can0 root handle 1: prio

sort CAN-ID 0x123 to a separate queue
$ tc filter add dev can0 parent 1:0 prio 1 \
 can sffid 0x123 flowid 1:1

sort CAN-ID 0x124 to a separate queue
$ tc filter add dev can0 parent 1:0 prio 2 \
 can sffid 0x124 flowid 1:2

catch the rest into the default class
$ tc filter add dev can0 parent 1:0 prio 3 \
 can sffid 0x0:0x0 flowid 1:3

iCC 2012 CAN in Automation

05-15

When the CAN identifier 0x123 is to be
sent, the CAN frame is sorted into the prio
1 queue. The frames in the prio 3 queue
are sent to the CAN bus when the higher
priority queues are empty.

An alternative utilization for traffic control
can be the throttling of outgoing traffic with
a token bucket filter. This can be used to
slow down the traffic on a local virtual CAN
interface to have a realistic throughput like
125 kbit/s even without real CAN
hardware. Usually the runtime created
virtual CAN network devices are not
limited in bandwidth like the loopback
device for local internet protocol traffic.

Multiuser requirements obviously need to
be solved on the host differently than in
known embedded systems which has an
impact on the CAN network driver
implementation. Most CAN controllers
provide a set of several transmit objects
that can be accessed via different memory
registers. Based e.g. on the CAN
identifiers stored in the transmit objects an
‘intelligent’ CAN controller is able to decide
which object to transmit first. To be able to
specify the sequence of sent CAN
messages with queueing disciplines the
CAN controller has be configured in a
simple FIFO mode. Therefore only one
transmit object is used in the Linux CAN
network drivers even when the CAN
controller itself provides more than one
transmit object. To ensure the maximum
CAN throughput so-called shadow
registers are used if available. Shadow
registers allow writing the next CAN
message into the CAN controller while the
current transmission is in progress.

The CAN classifier for Linux queueing
disciplines is currently evaluated with a
prototypic implementation [13]. Analogue
to the CAN gateway this traffic control
approach has the potential to become part
of the Linux mainline kernel.

Summary

The Linux subsystem for the Controller
Area Network standardized the
programming interfaces for CAN driver
programmers and CAN application
programmers. In comparison to a

programming interface with a character
device driver model, the chosen approach
allows to implement various CAN specific
communication protocols inside the
operating system as well as the reuse of
established and powerful networking
techniques like network traffic control. The
clear and simple network device driver
interface known from Ethernet drivers
leads to an easy exchangeability of CAN
hardware without changing the existing
applications. The Open Source
development process in the Linux kernel
enables the contribution of new CAN
drivers and CAN based protocols for
everyone in an open community and is
independent from single vendors.

For novice CAN application developers
there is no break in the programming
philosophy known from other networking
technologies and the stable socket
programming interface promises a
protection of investment. Especially CAN
drivers that found their way into the Linux
mainline kernel are continuously
maintained and fixed in a community
process so that they stay operational for
all upcoming Linux kernel versions.

Linux targets a wide range of embedded
systems and control applications. With the
introduced network protocol family
PF_CAN the Controller Area Network is
supported in the Linux operating system
like any other communication network and
embedded serial bus system out-of-the-
box.

References

[1] "ISO 15765-2: Road vehicles –

Diagnostics on Controller Area
Networks (CAN) - Part 2: Network
layer services," Geneva, Switzerland,
2004.

[2] "CAN documentation - Linux Cross
Reference," 2011. [Online]. Available:
http://lxr.linux.no/#linux+v3.0/Docume
ntation/networking/can.txt#L175.
[Accessed 12 12 2011].

[3] "CAN core.h - Linux Cross
Reference," [Online]. Available:
http://lxr.linux.no/#linux+v3.0/include/li
nux/can/core.h#L44. [Accessed 12 12

iCC 2012 CAN in Automation

05-16

2011].
[4] M. Sojka, P. Pisa, S. Ondrej, O.

Hartkopp and Z. Hanzalek, "Timing
Analysis of a Linux-Based CAN-to-
CAN Gateway," Proceedings of the
13th Real Time Linux Workshop, 20
10 2011. [Online]. Available:
https://lwn.net/images/conf/rtlws-
2011/paper.22.html. [Accessed 12 12
2011].

[5] O. Hartkopp,
"Programmierschnittstellen für
eingebettete Netzwerke in
Mehrbenutzerbetriebssystemen am
Beispiel des Controller Area Network
(Dissertation)," [Online]. Available:
http://edoc.bibliothek.uni-
halle.de/servlets/DocumentServlet?id
=9738. [Accessed 12 12 2011].

[6] "ISO 15765-2 implementation on
SocketCAN project repository,"
[Online]. Available:
https://gitorious.org/linux-can/can-
modules/blobs/master/net/can/isotp.c.
[Accessed 12 12 2011].

[7] "VAS5163 Workshop Equipment,"
[Online]. Available: http://www.dne-
gmbh.de/elektronik/de/gast5163/index
.htm. [Accessed 12 12 2011].

[8] "candump implementation on
SocketCAN project repository,"
[Online]. Available:
https://gitorious.org/linux-can/can-
utils/blobs/master/candump.c.
[Accessed 12 12 2011].

[9] AUTOSAR, "Specification of SW-C
End-to-End Communication
Protection Library," [Online].
Available:
http://www.autosar.org/download/R4.
0/AUTOSAR_SWS_E2ELibrary.pdf.

[Accessed 12 12 2011].
[10] "netlink Kernel API - The Linux

Foundation," [Online]. Available:
http://www.linuxfoundation.org/collabo
rate/workgroups/networking/netlink.
[Accessed 12 12 2011].

[11] W. Almesberger, "Linux network
traffic control - implementation
overview," Proceedings of 5th Annual
Linux Expo, Raleigh, NC, May 1999,
pp. 153-164, [Online]. Available:
http://www.almesberger.net/cv/papers
/tcio8.pdf. [Accessed 12 12 2011].

[12] "CAN modified TC tool for Linux traffic
control," [Online]. Available:
https://rtime.felk.cvut.cz/gitweb/lisovro
s/iproute2_canprio.git/blob/HEAD:/tc/f
_can.c. [Accessed 12 12 2011].

[13] "CAN classifier for Linux traffic
control," [Online]. Available:
https://rtime.felk.cvut.cz/gitweb/lisovro
s/linux_canprio.git/blob/canprio:/net/s
ched/cls_can.c. [Accessed 12 12
2011].

Dr. Oliver Hartkopp
Volkswagen AG
Brieffach 1777
38436 Wolfsburg, Germany
+49 5361 9 36244
oliver.hartkopp@volkswagen.de
http://www.volkswagenag.com

