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Since Linux 2.6.25 (issued 2008-04-17) the Linux mainline kernel supports the network 
protocol family PF_CAN providing standardized programming interfaces for CAN 
users and CAN driver developers. This paper provides an overview of the 
implemented technologies and challenges to integrate the Controller Area Network 
into a non-real-time multiuser/multitasking operating system. Due to the standardized 
network driver model for CAN hardware a wide range of different CAN controllers and 
System-on-Chip CAN IP cores are supported by Linux out-of-the-box. In opposite to 
usual embedded CAN ECUs the Linux networking system is designed to handle 
multiple CAN applications using multiple CAN busses at the same time. The 
integration of the CAN infrastructure into the networking stack allows to implement 
CAN-specific transport protocols like ISO 15765-2 or high-performance CAN frame 
gateways inside the operating system context. Finally the paper discusses solutions 
for expected prioritization issues when executing multiple CAN applications and 
summarizes requirements for Linux-preferred CAN controller concepts. 
 
Today the CAN bus is used in a wide 
range of control applications. Usually the 
content based addressing is practiced to 
transfer information by sending single 
CAN frames. In the automotive context 
cyclic transmissions are used to detect the 
absence of the data source within a 
reasonable time. E.g. when the cyclic 
status information of a CAN controlled 
media player is not received every 200ms 
the media player can be disabled in the 
HMI of the vehicles Infotainment system. 
Additionally so-called CAN transport 
protocols are used in the vehicles on-
board diagnostics (OBD) to provide a 
virtual point-to-point connection between 
the diagnosis tester and the CAN ECU. 
With help of these CAN transport protocols 
(like ISO 15765-2 [1]) PDU length up to 
4095 bytes can be transferred via CAN 
which is used e.g. for firmware updates. 
 
Character device drivers for CAN 
 
Having these two use cases in mind the 
known CAN drivers for Linux were not able 
to fulfill any of them appropriately in 2002. 
Due to the fact that known CAN drivers 
based on the character device driver 
model the interface to the CAN controller 
was simple and direct – as known from 
character based serial drivers. The various 
CAN character device drivers presented a 
more or less abstract programming 
interface that is specific to CAN controller 
capabilities or vendor requirements. 

Especially the functionality provided by the 
CAN driver is reduced to apply CAN 
identifier filters. 
 
To implement content filters for the 
payload of cyclic CAN messages these 
messages had to be processed in user-
space context. E.g. if only a state change 
in the payload was relevant for the 
application each received CAN message 
had to be transferred from kernel-space 
into user-space for a comparison with the 
former one. 
 
The implementation of a CAN transport 
protocol has to fulfill restrictive timing 
requirements down to a few milliseconds. 
This cannot be ensured in the user-space 
context where several processes in a 
multitasking system share the same CPU. 
Depending on the system load the 
processes get their CPU time regulated by 
the system scheduler and the resolution of 
the system timer. The common alternative 
to implement CAN transport protocols for 
multitasking operating systems is to have 
a separated embedded CAN CPU or to 
use a real-time variant of the selected 
multitasking operating system (OS). 
 
CAN networking in Linux 
 
The point-to-point network communication 
in multitasking operating systems is well 
known from the Internet protocol (IP) 
communication. Different connection 
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oriented and connectionless protocols 
based on the IP like the TCP and UDP are 
state of the art in common operating 
systems. Adapting this internet networking 
technology to realize the similar 
requirements of CAN transport protocols 
leads to an implementation of the CAN 
access inside the OS network stack. 
 
This approach has several advantages 
over the formerly described character 
device driver model: 
 
• Standard programming interfaces for 

system calls (‘network sockets’) 
• Standard network driver model known 

from Ethernet drivers 
• Established abstraction layers in the 

network stack 
• Communication protocols implemented 

inside the operating system context 
• Multiuser access to the network 
 
The definition of a network device driver 
interface for the Controller Area Network is 
the first step to unify the CAN bus access. 
As known from Ethernet networking the 
driver abstraction allows the replacement 
of networking hardware without modifying 
the user applications like e-mail clients or 
web browsers. On the other hand the CAN 
network device definition allows the 
hardware vendor to focus on the driver 
development without being in charge to 
specify and implement user-space 
programming interfaces and tools. 
 
The direct access to network devices can 
be performed with a privileged access to 
the PF_PACKET socket interface. But 
using the PF_PACKET protocol family 
sockets for CAN network devices has 
some vital drawbacks: 
 
1. Privileged access rights are needed 

(Administrator only) 
2. No full network transparency for local 

CAN applications (See [2]) 
3. No efficient traffic filtering based on 

CAN identifiers 
4. No integration of CAN specific 

(transport) protocols  
 
Especially the missing network 
transparency (point 2) turns out as a 
knock-out criterion in a multiuser 

environment, as different CAN applications 
would have a different view of the existing 
CAN bus traffic [2]. 
 
Network protocol family PF_CAN 
 
To overcome with the limitations caused 
by accessing CAN network devices with 
PF_PACKET sockets a new protocol 
family for the Controller Area Network has 
been created. The integration of this 
PF_CAN protocol family into the Linux 
network stack can be derived from existing 
network protocol families like DECnet, 
Appletalk or AX.25 that also use the Linux 
networking infrastructure with different 
networking hardware and protocols. 
 
To establish a separate data path for CAN 
messages and CAN devices the data 
buffers and network devices are identified 
with new type definitions: 
 
• ETH_P_CAN identifies network data 

buffers that contain CAN messages 
• ARPHRD_CAN identifies CAN network 

devices that handles network data 
buffers marked as ETH_P_CAN type 

 
Based in these definitions a new PF_CAN 
protocol family implementation can 
register itself to be responsible for 
ETH_P_CAN marked buffers containing 
CAN messages. 
 
Together with the PF_CAN/AF_CAN value 
definitions and a new CAN socket address 
structure the missing link for the socket 
programming interface for user-space 
applications is established. From this point 
the protocol family PF_CAN provides a 
framework that manages the CAN data 
flow from the user to the CAN network 
driver and vice versa. 
 
Inside the operating system PF_CAN 
offers programming interfaces for various 
CAN based protocols. Comparable to UDP 
and TCP being different protocols of the 
protocol family PF_INET for internet 
protocol networking new CAN relevant 
functionalities can be hosted inside the 
PF_CAN framework. The different CAN 
protocols can be accessed from user-
space applications with different protocol 
numbers that are functional available 
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when a CAN protocol implementation 
registers itself at the PF_CAN framework. 
 
To provide a multiuser access to CAN 
traffic the PF_CAN core offers internal 
functions to CAN protocol implementations 
to send and receive CAN frames [3]: 
 
can_send() 
Send a data buffer containing a CAN 
frame to a CAN device. Performs sanity 
checks for CAN frames (e.g. dlc) and 
ensures the local echo functionality. 
 
can_rx_register() 
Register a callback function that is 
executed on the reception of a CAN 
identifier that matches the given 
mask/value filter. 
 
can_rx_unregister() 
Remove a formerly registered 
subscription. 
 
Depending on the given mask/value filter 
different filtersets are used to reduce the 
CPU consumption when checking the 
registered subscriptions at runtime. The 
per-interface created filtersets are checked 
in a software-interrupt on every CAN 
frame reception. Due to the described 
multiuser requirement the CAN drivers 
intentionally do not support any system 
wide CAN identifier filters. The 
performance of the software-interrupt 
based CAN filters has been evaluated in 
[4]. 
 
CAN Protocols in PF_CAN 
 
The protocol CAN_RAW offers a similar 
programming interface as known from the 
CAN character device drivers. Analogue to 
opening a character device file in Linux 
(e.g. /dev/can0) the CAN application 
programmer creates a network socket and 
reads/writes specific data structures 
representing CAN frames. 
 
Additional to the fact that multiple 
instances of CAN_RAW sockets can be 
created at the same time several different 
CAN identifier filters can be applied to 
each created socket separately. Due to 
the different filters for each CAN_RAW 
socket a specific view to the selected CAN 

bus traffic can be archived and separately 
handled by different applications and 
users on the system. 
 
The CAN_RAW sockets identifier filters 
reference directly to the per-interface 
filtersets provided by the PF_CAN 
framework. The simple callback 
registration delivers the subscribed CAN 
frames directly to the requesting socket 
instance to be read by the user-space 
CAN application. 
 
In automotive networks the CAN 
messages are not only used to transfer 
signal values in the CAN frames payload. 
Sending CAN frames periodically e.g. 
every 200ms allows to detect failures of 
the originating CAN node. This mode of 
operation has two drawbacks regarding 
the bus load and the message processing. 
Even when the reception of CAN traffic is 
reduced by filters and/or message buffers 
the CAN frame payload needs to be 
checked whether the relevant signal has 
changed. 
 
To reduce the effort for payload content 
filtering the CAN broadcast manager 
protocol (CAN_BCM) has been integrated 
into PF_CAN. The CAN_BCM is a 
programmable content filter and timeout 
handler for incoming CAN frames and can 
also manage the sending of cyclic 
messages in operating system context. 
Due to the Linux high resolution timers the 
precise sending of messages is 
independent from process scheduling. The 
content filter that checks changes in the 64 
bit payload is processed in the software 
interrupt at CAN frame reception time to 
ensure that only relevant changes are 
passed to the CAN application in user-
space. 
  
CAN_BCM transmission path functions: 
 
• Cyclic transmission of a CAN message 

using a given interval time 
• Redefinition of CAN message content 

and interval timers at runtime 
• Counting of performed intervals with 

automatic switching to a second 
interval time 
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• Immediate transmission of changed 
CAN message content with/without 
starting the timer interval 

• Single transmission of CAN messages 
 

BCM receive path functions: 
 
• Receive filters to check changes in 

relevant CAN message elements 
(payload, data length code) 

• Receive filters for single CAN 
identifiers (no content matching) 

• Receive filters for multiplex CAN 
messages (e.g. with indices inside the 
CAN message payload) 

• Receive filters for monitoring the data 
length code of the CAN message 

• Respond to receive transmission 
request (RTR) CAN messages 

• Time-out-monitoring of CAN messages 
• Reduction of the update rate for 

content filter changes messages 
(throttling) 

 
Depending on the use case payload 
content filtering and throttling can provide 
a significant reduction of the system load 
(see [5] p. 102-103). Additionally the 
comfortable CAN_BCM socket 
programming interface reduces the 
complexity of the CAN application and 
supersedes a complex and imprecise 
timer handling in user-space. 
 
CAN transport protocols in OS context 
 
Known solutions that implement CAN 
transport protocols use an embedded CAN 
processor in the CAN hardware interface 
to ensure the ambitious protocol timing 
requirements. The availability of Linux high 
resolution timers for the precise sending of 
CAN messages lead to the question if 
these timing requirements of CAN 
protocols can be handled inside the 
PF_CAN framework. A public available 
implementation [6] of the ISO 15765-2 
CAN transport protocol [1] has been 
evaluated and compared to a commercial 
diagnosis tool [7]. It turned out that 
minimum response time of the Linux 
implementation was at least twice the time 
and in the worst case ten times longer 
than with the embedded CAN CPU 
solution. As the 4ms delay of the worst 

case scenario was still covered by the 
specified protocol timeout of 1000ms the 
PF_CAN based implementation is conform 
to ISO 15765-2. Besides the measured 
overall timing ranges the open source 
implementation processed the CAN 
protocol messages two times faster than 
the embedded solution (average values).  
 
CAN frame routing using PF_CAN 
 
In internet protocol networking the routing 
and forwarding of IP traffic through 
different network devices is common 
practice. The routing and modifying 
operations for IP packets are based on IP 
addressing schemata. As the qualified 
CAN addressing is based on the CAN 
identifier and the CAN bus interface the 
existing routing implementations inside the 
operating system context are not suitable 
for the Controller Area Network. 
 
Attempts to route CAN frames efficiently 
with user-space applications like candump 
[8] failed through the existing process 
scheduling which lead to drops and non-
deterministic delays depending in the size 
of the per-socket receive buffer size. 
 
To integrate an efficient CAN message 
routing in Linux the created CAN gateway 
(CAN_GW) makes use of the PF_CAN 
filter subscription infrastructure. The 
registered filters trigger callback functions 
in the CAN gateway where the received 
CAN frames can optionally be modified 
before they are sent to the outgoing CAN 
interface. The one-hop CAN message 
forwarding supports the following on-the-
fly modifications of the CAN frame 
elements CAN-ID, CAN-DLC, CAN-DATA: 
 
1. AND: logical ‘and’ element with value 
2. OR: logical ‘or’ element with value 
3. XOR: logical ‘xor’ element with value 
4. SET: set element to new value 
 
After performing one or more of these 
optional CAN frame modifications in the 
described order a potentially corrupted 
payload data checksum can be built on 
demand. Additional to a simple XOR 
checksum calculation for a given data set, 
three CRC8 profiles can be selected that 
can calculate a CRC8 value based on an 
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individual 256 byte CRC table. With this 
functionality the CAN gateway is able to 
create AUTOSAR End-to-End-Library [9] 
compliant CAN messages on-the-fly even 
after modification. 
 
The implementation of the CAN gateway is 
optimized towards performance as the 
optional modification and checksum 
calculating operations are executed in the 
software interrupt context. Detailed 
performance measurements of CAN_GW 
have been made [4]. The CAN gateway 
implements the Linux routing capability for 
the protocol family PF_CAN and supports 
the netlink configuration interface [10] that 
is also used for the routing configuration of 
internet protocol data. 
 
CAN frame traffic shaping 
 
Due to the new multiuser capabilities of 
the CAN networking implementation in 
Linux a new challenge to manage the host 
access to a single CAN bus medium 
arises. For example a CAN application A 
sends a status information on CAN-ID 
0x123 every 200ms. Application B sends a 
4095 byte PDU via ISO 15765-2 without a 
tx delay requested from the 
communication partner. This leads to an 
expected transmission sequence like: 
 
deltaT ID data 
0.200 0x123 00 00 00 20 
0.200 0x123 00 00 00 21 
0.200 0x123 00 00 00 22 
0.100 0x730 02 03 04 05 06 07 08 09 
0.001 0x730 02 03 04 05 06 07 08 09 
0.001 0x730 02 03 04 05 06 07 08 09 
0.001 0x730 02 03 04 05 06 07 08 09 
0.001 0x730 02 03 04 05 06 07 08 09 
(… 500 CAN frames later …)  
0.001 0x730 02 03 04 05 06 07 08 09 
0.001 0x730 02 03 04 05 06 07 08 09 
0.001 0x123 00 00 00 23 
0.001 0x123 00 00 00 24 
0.001 0x123 00 00 00 25 
0.001 0x123 00 00 00 26 
0.200 0x123 00 00 00 27 
0.200 0x123 00 00 00 28 
 
Due to the fact that the ISO 16765-2 
protocol pushed more than 500 CAN 
frames en-bloc into the CAN network 
device queue the relevant status 

information is not send on the CAN bus for 
the ISO-TP frames transmission time. 
Depending on the used bitrate the block 
transfer time the cyclic status information 
can be inhibited which leads to 
inconsistencies and timeout errors in the 
data sink. 
 
The described data flow effect is a known 
problem in internet protocol networking 
too. To be able to browse the web in a 
smooth way while having peer-to-peer 
data communication the traffic can be 
controlled depending on its content. This 
so-called ‘traffic shaping’ for peer-to-peer 
connections is part of a traffic control 
framework inside the Linux networking. 
The various traffic control capabilities to 
prioritize, throttle or drop packets are 
designed to handle internet protocol traffic 
and are not aware of Controller Area 
Network identifiers. Therefore the 
classifiers to sort and separate packets 
into network queues have been extended 
with a new CAN classifier implementation. 
 
This CAN classifier support enables the 
usage of the entire traffic control (TC) 
capabilities of the Linux networking 
subsystem [11] although not every 
queueing discipline is suitable for CAN use 
cases. The traffic control configuration 
requires administrative access rights 
which concentrate the host configuration 
to a single point. This allows setting up the 
local CAN node fulfilling the requirements 
of the different CAN applications and the 
other CAN bus participants. 
 
This setup can be used to solve the initial 
example with the modified ‘tc’ tool [12]: 
 
# create a can0 prio traffic control handle 
$ tc qdisc add dev can0 root handle 1: prio 
 
# sort CAN-ID 0x123 to a separate queue 
$ tc filter add dev can0 parent 1:0 prio 1 \ 
        can sffid 0x123 flowid 1:1 
 
# sort CAN-ID 0x124 to a separate queue 
$ tc filter add dev can0 parent 1:0 prio 2 \ 
        can sffid 0x124 flowid 1:2 
 
# catch the rest into the default class 
$ tc filter add dev can0 parent 1:0 prio 3 \ 
        can sffid 0x0:0x0 flowid 1:3 
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When the CAN identifier 0x123 is to be 
sent, the CAN frame is sorted into the prio 
1 queue. The frames in the prio 3 queue 
are sent to the CAN bus when the higher 
priority queues are empty. 
 
An alternative utilization for traffic control 
can be the throttling of outgoing traffic with 
a token bucket filter. This can be used to 
slow down the traffic on a local virtual CAN 
interface to have a realistic throughput like 
125 kbit/s even without real CAN 
hardware. Usually the runtime created 
virtual CAN network devices are not 
limited in bandwidth like the loopback 
device for local internet protocol traffic. 
 
Multiuser requirements obviously need to 
be solved on the host differently than in 
known embedded systems which has an 
impact on the CAN network driver 
implementation. Most CAN controllers 
provide a set of several transmit objects 
that can be accessed via different memory 
registers. Based e.g. on the CAN 
identifiers stored in the transmit objects an 
‘intelligent’ CAN controller is able to decide 
which object to transmit first. To be able to 
specify the sequence of sent CAN 
messages with queueing disciplines the 
CAN controller has be configured in a 
simple FIFO mode. Therefore only one 
transmit object is used in the Linux CAN 
network drivers even when the CAN 
controller itself provides more than one 
transmit object. To ensure the maximum 
CAN throughput so-called shadow 
registers are used if available. Shadow 
registers allow writing the next CAN 
message into the CAN controller while the 
current transmission is in progress. 
 
The CAN classifier for Linux queueing 
disciplines is currently evaluated with a 
prototypic implementation [13]. Analogue 
to the CAN gateway this traffic control 
approach has the potential to become part 
of the Linux mainline kernel. 
 
Summary 
 
The Linux subsystem for the Controller 
Area Network standardized the 
programming interfaces for CAN driver 
programmers and CAN application 
programmers. In comparison to a 

programming interface with a character 
device driver model, the chosen approach 
allows to implement various CAN specific 
communication protocols inside the 
operating system as well as the reuse of 
established and powerful networking 
techniques like network traffic control. The 
clear and simple network device driver 
interface known from Ethernet drivers 
leads to an easy exchangeability of CAN 
hardware without changing the existing 
applications. The Open Source 
development process in the Linux kernel 
enables the contribution of new CAN 
drivers and CAN based protocols for 
everyone in an open community and is 
independent from single vendors. 
 
For novice CAN application developers 
there is no break in the programming 
philosophy known from other networking 
technologies and the stable socket 
programming interface promises a 
protection of investment. Especially CAN 
drivers that found their way into the Linux 
mainline kernel are continuously 
maintained and fixed in a community 
process so that they stay operational for 
all upcoming Linux kernel versions. 
 
Linux targets a wide range of embedded 
systems and control applications. With the 
introduced network protocol family 
PF_CAN the Controller Area Network is 
supported in the Linux operating system 
like any other communication network and 
embedded serial bus system out-of-the- 
box. 
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