
iCC 2006 CAN in Automation

03-15

Object-oriented, open environment with Linux for
hydraulic boom controller

Jari Savolainen, Jyrki Kullaa, Miki Wiik, Jari Söderholm

Intelligent Machine Control project, Helsinki Polytechnic Stadia

The objective of this study was to develop an intelligent control system for hydraulic
booms and other heavy machinery. An object oriented open source software
development environment was utilized and the system was implemented using an
embedded device with Linux as the operating system. The software was written in C
and C++. Open standards and libraries, mainly the GNU C and C++ libraries, the POSIX
standards and the CANopen communication protocol, were used. The CANopen
protocol was modeled with C++ classes and presented by Unified Modeling Language
(UML). A Domain-Specific Modeling language, specifically targeted at hydraulic
booms, enables the initialization of the control software to different kinds of hydraulic
booms and enables the modification of the control software using the concepts of the
domain. By utilizing the scheduling features of the 2.6.-series Linux kernel, the control
system achieved soft real-time behavior. The results were validated using both a
simulated environment and a full-scale hydraulic boom.

1 Embedded soft real-time Linux

The requirements for mobile hydraulic
system are very demanding and involve
the hardware, operating system and
software. This study utilized a readily
available hardware platform and
concentrated on researching the suitability
of Linux as the operating system on which
to develop and run the control software.
The chief reason behind the growing
popularity of Linux is its openness. Source
code as well as binaries is freely available
for distribution and modification, which is
backed up by a global community of users,
developers and distributors. In embedded
environments the use of Linux is growing a
rapidly due to the following facts: It offers
compatibility with many existing
Application Programming Interfaces (API)
and supports a vast number of
communication protocols, the kernel is
ported to a multitude of platforms and
device drivers for most hardware are
readily available. There are many
programming tools for Linux, some of
which are targeted for embedded software
development. Many of these programs are
available at no cost, making them an
inexpensive alternative to conventional
embedded software tools. Furthermore, it
is easy to find Linux developers.

Much of the development of Linux has
traditionally been targeted at server and
workstation environments where overall
throughput is prioritized. However, recent
years have seen an increase in activity of
the developing Linux for embedded
environments, where the focus is shifted to
system timing requirements and effective
use of resources. The embedded system
used for this study, as well as many other
embedded systems, impose strict timing
requirements on the operating system.
Although the current Linux kernel cannot
guarantee hard real-time response, there
are a number of modifications to improve
upon this. However, in soft real-time
environments were occasional deviations
are allowed, the 2.6.-series Linux kernel
fares quite well. The standard scheduler of
Linux separates real-time processes and
gives them priority over normal ones,
resulting in soft real-time response on
most systems.
There are number of ways in which a
Linux distribution can be modified in order
to gain improved real-time behavior. By
modifying kernel features that affect
scheduling and timing, and by disabling all
unnecessary services and features gains
in timing can be made. Furthermore by
minimizing the use of slow hardware
devices and system calls, the

iCC 2006 CAN in Automation

 03-16

responsiveness of a system can be
increased substantially.
The standard 2.6. series kernel running on
an Intel architecture is generally capable
of a response time in the millisecond
range. If a lower response time is desired,
there are kernel patches and modified
variants available that can reduce the
response time down to the range of 20
microseconds. Currently, the two most
popular open source real-time solutions
are the Linux kernel real-time pre-empt
patch and Real-time Application Interface
(RTAI).
The Linux kernel real-time pre-emption
patch adds kernel pre-emption points in
order to lower latencies. The patch also
uses dedicated pre-emptive kernel threads
for the interrupt handlers. The real-time
patch is constantly developed and many
parts of it have been incorporated into
main Linux kernel. RTAI is patch for the
standard Linux kernel that enables hard
real-time in Linux. It can execute
applications in both user and kernel space
and is capable of a response time in the
20 microsecond range, where user space
adds a delay of a few microseconds
compared to kernel space. RTAI is
implemented as a nanokernel, where the
Linux kernel is run as a low priority
process that is executed when no hard
real-time tasks are scheduled for
execution. In addition to the
aforementioned, there are also some
commercial implementations of hard real-
time enhancements to Linux.
In this study we used a standard Linux
kernel that was compiled with features
aimed at reducing response time. A
monolithic approach was taken in that only
the CAN interface card driver was
compiled as a module. A specific
distribution was created, that contains only
the essential programs and services and
that can be executed in read-only mode
from flash memory. The control system
itself is executed in a continuous loop with
a loop time in the 5 millisecond range. The
control system is used to drive a hydraulic
boom with very good results, confirming
the suitability of Linux as an operating
system for this type of embedded
environment. For further informations see
[1][2].

2 Design consideration and programming
techniques

Embedded systems of a soft real-time
type, such as the one used in this study,
are designed with longevity and stability of
operation as primary goals, making
absolute performance a secondary
consideration. The need for stable
operation is further emphasized in
systems where the user has little or no
possibility to interact with the underlying
software other than by performing a
complete system restart. Since such
situations are unacceptable at best, extra
safeguarding mechanisms need to be
introduced in order to avoid them.
Typical application programming is
targeted at powerful multi-tasking systems,
where the application is run as a result of
user-driven events. Embedded systems
differ from this in that they typically run a
few specific applications that comprise the
functionality of the device. As a result, the
timeliness of embedded software becomes
easier to predict and the software can
allocate most of the resources of the
platform.
The software of the control system
designed for this study performs a
predefined sequence of operations in a
timed loop, and as such it is a typical
embedded device. For debugging
purposes, the sequence is split into logical
parts that are implemented as separate
processes. In order to facilitate
communication between the processes, a
shared memory segment containing all
relevant data was utilized. In addition to
simplifying the structure of the processes
this has the advantage of providing a real-
time interface to the data that can be used
for debugging or by other applications.
The control system utilizes semaphores as
a synchronization primitive with which to
protect the shared data, but also as a
mechanism in which to run the separate
processes in a predefined sequence.
Furthermore, this enables slow operations,
such as traffic with the CAN to be
implemented as separate processes,
resulting in effective use of the systems
resources through multitasking. Figure 1
displays an overall picture of the separate

iCC 2006 CAN in Automation

03-17

processes and the shared memory
segment.

Figure 1: Process model of boom

The popularity of the C++ programming
language in embedded environments is
increasing. The object oriented
programming paradigm of C++ is powerful,
yet intuitive and offers an improvement to
traditional procedural C. Yet, as C89 forms
the subset of C in the C++ standard,
incorporating an existing C code base into
C++ is very flexible. However, although C
and C++ share the same appearance,
their basic structure differs greatly and a
transition from procedural C to object
oriented programming C++ is also a
transition in focus from program flow to
architecture and components.
The object oriented paradigm offers many
benefits: development can be done using
advanced case tools, the paradigm gives
possibilities to use many kinds of
components and design patterns and
reverse engineering tools can be used to
create ready code from graphical
represented class models. There are
drawbacks as well: the transition from
structural to object-oriented programming
can be a demanding task, all object-
oriented concepts are not feasible in real-
time environments and the size of the
executable code can be larger than in a
procedural program. However, much of
the growth can be located to the
constructing and destructing phase of
objects. By keeping these outside real-
time loops of execution, object-oriented
technology can be used even in digital
signal processing environments, where
real-time requirements are extremely hard.
The dynamic memory management
facilities of C++ introduce the possibility of
memory fragmentation that have the
potential of causing long term instability
and added overhead. This study makes
use of dynamic memory allocation, but in a

stable manner where all dynamic memory
allocation is done during construction of
the object and all objects are constructed
at startup. De-allocation of memory is
done at object deconstruction, which in
turn is done as system shutdown. As a
result, the memory footprint of the program
is kept stable during operation and by
locking all used pages in memory; the
possibility of swapping is eliminated. In
future development will require dynamic
memory allocation at runtime, an object-
caching mechanism similar to the slab
layer provided by the Linux kernel, could
be utilized.
The software used within this study
consists of multiple processes that are run
in a predefined sequence, resulting in
consistent operation that is straightforward
to debug. By excluding the more complex
facilities of C++ such as exception
handling, run type information and
dynamic casting, the code itself can be
kept simple and straightforward while
keeping the memory overhead low. Even
though C++ allows the construction of very
complex objects and inheritance
relationships, special care needs to be
taken to ensure the consistency in
execution time of branches and child
objects. If need be, delays or timers could
be utilized in order to guarantee timely
operation.
Although embedded systems traditionally
rely heavily on C, there is no
overwhelming reason that would prevent
the use of the C++, as long as the special
considerations of the environment are kept
in mind. Indeed, the development of the
software for this study has come to
completely rely on C++ with excellent
results. For further information: [3].

3 Object representation of the hydraulic
boom

The shared memory segment that the
control system utilizes for Inter-Process
Communication (IPC) contains all the
relevant data of the hydraulic boom using
object representation. The data container
object contains object representation of
the physical parts of the boom, which
provides an intuitive way to store the data

iCC 2006 CAN in Automation

 03-18

collected from specific devices. Figure 2
displays the layout of the data container.

Figure 2: Data container of components
An application for a mobile machine has a
lot of device-specific configuration
parameters. By combining the object
representation of the hydraulic boom with
domain specific GOPRR, the complexity of
device configuration can be simplified and
automated. Figure 3 shows a DSM model
of the hydraulic boom, which is used by a
code generator to automatically produce
the all initialization functions needed by
the control system.

Figure 3: DSM model of boom
The control system itself contains
intelligent functionality for electronic load
compensation, negative load control of
cylinders, active vibration damping and a
x-y-coordination drive based on Jacobian
matrix. Thus, the control system provides
intelligent features, yet is easy to
configure.

4 Using UML in embedded development

The aim of UML is to be a helpful tool for
analyzing, architecture modeling and the
creation of software systems. One idea of
UML is to help a project group in planning

the whole system and developers of
details to understand the principles of the
whole program. UML can be introduced to
the development process gradually. If a
system is designed using object oriented
languages such as C++ or Java, it is
possible to convert class headers
automatically to UML class diagrams.
Typically, generated headers are very
similar to manually produced code.
However, complete automatic creation of
functions based on UML is not possible.
To maximize the benefit of UML
development tools they need to
communicate well with the rest of the
development environment. Optimally, UML
should be used as an alternative view to
the code and for effective debugging.

5 Domain specific modeling

The starting point of the Domain Specific
Modeling (DSM) paradigm is very different
from UML. DSM models do not contain
unnecessary information and they are
possible to develop without using object
oriented vocabulary, instead the model is
built using the terminology of the
application, which makes understanding
the model easy without knowledge of
programming terminology. The application
code is created by parsing through all
models, therefore the consistency of the
models is good. DSM models are more
tightly bound to each other than UML
models and don’t contain undocumented
relations. All parts of the code, except
libraries, are presented as models. Flaws
in the logic of an application are relative
easy to find because all model problems
are mirrored in the code immediately at
the next code generation.
With DSM it is possible to develop easily
decentralized programs. As one data is
presented only once in a model, it is
possible to take fragments of a model an
reuse it in other places of the code.
Consistency between processes is easy to
control with tight relations in the model.
The developer of the DSM project defines
the models which belong to application.
Therefore all objects within the application
are objects of only the specified domain.
By using a programmable code generators
it is easier to produce more optimized

iCC 2006 CAN in Automation

03-19

code than that of fixed generators. The
CANopen stack of the control system
produced by this study contains an
example of code generation. A typical
CANopen stack contains between 1000
and 2000 rows of source code compared
to the 150 rows of the implementation of
this study. Figure 4 displays a sample
model of a boom using the DSM of the
boom domain.

Figure 4: DSM model of a hydraulic
boom
When defining the modeling language of
the domain, GOPRR-notation (Graph,
Object, Property, Relationship and Role)
can be used to create a graph-based meta
model of the language. All objects used
within the project are drawn into graphs
that contain the objects roles and the
relationships thereof. GOPPR objects are
more common than UML objects and can
be for example a process, a thread, a
class or an instance of class. A property
describes features of graphs, objects,
roles and relationships. A relationship
connects objects by assigning them roles
in the activity of the object.
Using GOPRR graphs it is possible to
automatically produce code by parsing
every graph in a project. The coherency of
GOPPR graphs is better than in UML
models. UML code originates from every
model separately and therefore the
consistency of UML models is not
guaranteed. GOPRR is more flexible than
UML, but at an expense. It is not possible
to create a DSM and code generators
before the specifications of a product
family exists, except when using a
standard modeling language, such as
UML and SA/SD. Furthermore, not all of
the intelligence of a system can be
included in the models, but some have to
be included in the code generator.
Keeping these limitations in mind, DSM
can become a valuable tool in developing
and configuring product families.

6 Object Model of the CANopen protocol

The various messages of the CANopen
application protocol make use of the 11-bit
identifier and 8 byte data payload of the
CAN message frame in a diverging
fashion. Depending on the message, a
data field can contain both specific
information, such as the message
identifier, and indirect meta-like
information such as the originating node of
a TPDO. This complexity is increased
further by the added abstraction of the
object dictionary.
At first glance, there is no apparent pattern
in how the different messages utilize data,
which from a programmers perspective
means that the CANopen protocol might
prove challenging to master in a simple
and straightforward manner by just
manipulating the raw data. Furthermore,
since some bytes are split into subgroups,
the data itself cannot always be
interpreted in a simple manner using
hexadecimal notation, resulting in reduced
legibility1.
The CANopen protocol does however
exhibit aspects that combined with object-
oriented programming techniques result in
a hierarchical and simple categorization of
the various CANopen messages according
their type. All messages rely on the data
fields of the CAN message frame, but
make use of them in a predefined manner.
Thus, a parent-child relationship is formed,
were the child provides its own
implementation for the data fields. This
object-relationship is further evident when
used in conjunction with the pre-defined
broadcast and peer-to-peer connection
sets as illustrated by figure 5.

1 For instance, the first three bits of the SDO
command specifier byte represents the type of
transfer, while the interpretation and value of the
fourth bit varies.

iCC 2006 CAN in Automation

 03-20

Figure 5: Object relationship of
CANopen messages
By utilizing object representations of the
CANopen messages, rather than
manipulating the raw data, all data can be
formatted and processed with respect to
the message in which it is contained.
Consequently, the developer is presented
with a interface that is both intuitive and
presents the various CANopen messages
in a internal relationship that is in
accordance with the standard.
Furthermore, using message objects as
the primary data primitives increases
legibility and correctness by providing
automatic formatting of the various data
fields.
A completely object-oriented CANopen
application is currently being developed by
this study. By including object
representations of the physical CAN
nodes, the application will provide a
powerful and intuitive interface to the CAN,
with a one-to-one relationship between the
physical devices, the CANopen protocol
and the software objects.
For further information
CANopen generic pre-defined connection
set:
CiA draft Standard Proposal 301. CiA
Version 4.1. 21 February 2006.

7 Development of the drive modes

The control system was utilized in the
development of a coordinate drive mode
for a vehicle crane. The coordinate drive
mode enables moving the tool or tip of the
crane along horizontal or vertical
trajectories instead of controlling the joints
independently.

The actuator velocities are solved at each
time increment using the geometry
information of the crane and the current
configuration of the joints. The geometry
parameters are fixed, whereas the current
position has to be updated at each
increment. The joint positions are
measured using a displacement sensor at
each cylinder.
The kinematics software then solves the
actuator velocities that are required to
drive the tool along the specified axis at a
given speed. For this the algorithm utilizes
matrix algebra. The actuator velocities are
converted from binary format to voltages
that the valve amplifier uses, by using the
relationship between the volume flow and
voltage to the valve.
By using the control system, it was
possible to concentrate on the kinematics
problems, rather than the technical details
that were irrelevant to the problem at
hand. The position sensor data was visible
as variables within the software and the
computed actuator outputs were directed
to corresponding valve amplifier. The
coordinate drive mode could be selected
with a joystick button, after which joystick
motions were defined as tool velocities in
each axis direction.

8 Conclusion

The use of Linux in embedded
environments is growing. This study did
not reveal any limitations of the operating
system that would prevent its use in
embedded soft real-time applications for
mobile machines. Indeed, Linux has
proved itself very suitable for the purposes
of this study. If, however, hard real-time
operation is desired, the standard Linux
kernel does not provide sufficient support.
Instead, patches to the kernel or
alternative operating systems should be
considered.
Timeliness and stability of operation need
to be prioritized in the design of embedded
soft real-time systems. By excluding the
more complex facilities of C++, the
language has been used to realize an
object-oriented control system that
adheres to the requirements of timely

CAN message frame

CANopen
Communications Object

Pre-defined
Broadcast

Object

NMT

NMT Error Control

SYNC TIME

Pre-defined
Peer-to-peer

Object

EMCY PDO SDO

RX

TX

RX

TX

iCC 2006 CAN in Automation

03-21

behavior and a stable memory footprint. In
addition, by combining object
representations of CANopen messages
with object representations of the physical
CAN nodes, an interface to the CAN was
created, with a one-to-one relationship
between the physical devices and their
software object counterparts.
The mobile machine industry has many
possibilities to make gains in productivity
by the effective use of available software
development technologies. UML has
achieved a strong position, but it is
currently being mainly used for planning
and documenting purposes. DSM-GOPPR
adds a new level to software development
by allowing intelligent project management
inside product families. Furthermore, DSM
allows automating the development
process, which is becoming increasingly
important as the complexity of software is
continuously increasing.
Conclusively in can be said, that this study
has reinforced the view that programming
techniques commonly used in desktop
application development and the Linux
operating system can be successfully
employed in soft real-time environments.

References

[1] The Linux kernel pre-empt patch:
http://people.redhat.com/mingo/realtime-
preempt/

[2] RTAI Real-time application interface:
https://www.rtai.org/

[3] Robert Love, The Linux slab layer, Linux
Kernel Development, 2nd Edition. Novell
Press 2005.

