
iCC 2006 CAN in Automation

 06-6

Test requirements in networked systems

Jürgen Klüser, Vector Informatik GmbH

The use of CAN with J1939 or CANopen based higher layers leads to cost efficient and
flexible solutions, but together with a high increase of the electronics’ complexity. An
additional complication is the typical approach of distributed development between
OEMs and several suppliers. The consequence has to be a systematic improvement of
the development process. Project risks are to be reduced by taking testability as a
design requirement and by performing the appropriate tests in the very early project
phases. This paper discusses concepts combining system prototyping with test case
generation along the V-model.

1 Introduction

The development process of a networked
system can be described by the V-model.
Figure 1 shows the typical situation of
today’s testing activities in a simplified V-
model.
In contrast to pure theory the reality shows
a delay of the implementation phase.
Testing activities, even if planned in the
beginning, are going to be specified just
before they have to be performed. A
typical argument is that the
implementation phase will bring expertise
and even changes in the original design
and maybe even a more detailed view on
the requirements. The consequence of
late test specification is a high risk. Due to
the reduced time remaining, this most
often will delay the overall project – or
testing will not be performed sufficiently.

Problems in the implementation or in the
design, found at this late stage cannot be
solved in time and tested again.

2 Testability as a system requirement

The V-model includes two basic patterns.
The first says that every phase is identified
by results that have to pass a quality gate.
The second demands that the phases and
their quality gates on the right side are a
direct traceable consequence of the
corresponding phase on the left.
The System Requirements mainly define
“use cases”. This clearly should include
topics like testability as an input for the
architecture, requirements for EOL tests,
and diagnostics requirements. Applying
the two basic patterns to that approach of
testability as requirement forces the

system architect and
designer to provide
measures and specifi-
cations for tests in the
early phases.
Experience with that
approach in the
diagnostic domain as
presented by [3] showed
a significant increase in
quality and process
stability. This can be
applied to the testing
domain in the very same
manner.

3 System Architecture –
Introducing an
executable specification

Figure 1: Today’s testing activities in the product’s life
cycle

iCC 2006 CAN in Automation

06-7

For years it is state of the art to describe
the system architecture with simulation
tools as a simulated model. Besides
manual review technology this allows to
systematically verify many aspects of the
design. Consequent application of this
approach leads us to the concept of the
executable specification. This is true also
for the testing domain (Refer to [4]).
Specifying tests in an executable form in
fact leads to a first implementation level of
these tests. This immediately brings a set
of benefits:
The system architecture model can be
tested systematically. The real world
shows that problems detected in later
phases may require slight modifications in
the design. The tests can then be applied
as regression tests. In formal words this
means passing the Quality Gate
Architecture can be achieved with less
effort on a higher maturity level.
Even the test concept itself can be tested
in an early phase. A valid argument
against writing test specifications before
the verification and validation phases had
been that the implementation will almost
always bring modifications and changes.
These changes invalidated test
specifications and therefore resulted in
wasted effort. An executable test spec
can be changed without the need to
specify everything from scratch again.
From the communication’s perspective the
executable specification has further

advantages: After definition of the relations
between ECUs a big part of the
communication description can simply be
generated. This is even more true in those
cases where a higher layer protocol such
as J1939 or CANopen is used. These
standards give much information about
how relations have to be realized. In
J1939 for example the signals are
assigned to concrete parameter groups,
that in most cases have well-defined
communication parameters. The object
model of CANopen allows one to generate
the complete communication behavior
after selection of the object relations. But
tools with build-in knowledge of these
protocols do not only generate complete
communication system simulations – in
addition they generate many test
scenarios, that are ready-to-use. From
pure “use-case tests” as the highest layer
this can go downwards to “protocol tests”
and “communication tests”.
 The usage of typical commercial protocol
stacks also requires testing of the
integrated product. The flexibility for being
usable in many different applications in
protocol stacks is implemented by
configurability – which may be done
incorrectly by the integrator. The protocol
tests allow verification of conformance to
the higher layer standard.
This generation concept does not only
save time and enhance maturity once.
After potential changes the test cases can

Figure 2: Approach with an executable test specification

iCC 2006 CAN in Automation

 06-8

be regenerated automatically. This will
require minimal manual adaptations – if at
all.
Refining the system model by a basic
behavior description in fact specifies the
requirements as an input for the ECU
design. In parallel the test specifications
will be refined. These are to be passed to
the ECU suppliers (external company or
internal departments). Today they are
faced with the problem of written
specifications, which very often do not
describe specifically enough of what is
needed or which are not fully consistent.
Improved by the concept of passing
simulations the full strength develops with
having efficient test cases available that
are part of the development contract.
Regardless if the behavior description is
model driven or conventional, regardless
of the abstraction level – in any case the
simulation tool must support this by a built-
in description language or by an interface
to external behavior modeling – or the best
of both. Whether this is UML based, XML
based, proprietary or whatever goes
beyond the scope of this article.

4 ECU development

With a written specification, designing,
implementing and testing it on that basis
only, is pure theory. In reality the
developers need an environment with
which they can implement and test
stepwise. Like a debugger or emulator for
the SW environment the remaining bus
simulation for the communication part
most often is the only chance to provide a
sufficient environment. For example,
implementing and testing operation modes
of an ECU is not possible without
correctly working network management.
A typical problem in these small
development steps is the availability of the
counterpart of the communication
modules. It costs much effort and time to
set-up or implement the tests. For many
cases standard analysis tools are a good
choice. Much more efficient is the support
by a dedicated test tool. It should provide
the generated tests not only as a set but
should allow for the selection, grouping,
and execution of single tests easily. To

accomplish this each test needs clear pre-
conditions and constraints.
Specifically the protocol tests and
communication tests help to detect
problems very early and therefore reduce
the number of iterations between
implementation and verification phases.

5 Re-use and refinement for the ECU
verification

The final phase of the ECU development
is the ECU verification. Potential
modifications of the original specifications
caused by implementation experience
lead only to modifications of the
executable prototype. These immediately
can be applied in the form of the
“remaining bus simulation” concept. And
the same is true for the modeled tests.
For many higher layer protocols user
organizations provide conformance tests,
for example the CANopen conformance
test tool of CiA, the DeviceNet
conformance test of ODVA, or the
ISOBUS test of DLG. It is strictly
recommended to use such support. It
guarantees that an ECU fulfills a certain
level of conformance and interoperability.
Anyhow, an intended drawback is that if a
test fails, the tools do not really help in
finding the reasons. This is a gap that has
to be filled by the dedicated development
test tools. So, once again the ability to
perform single tests with meaningful
tracing and problem tracking – and this
with fast turnaround times – is
indispensable.
As an example take CANopen: If the SDO
(transport protocol) implementation has a
problem accessing an object, the
conformance test just will tell you “SDO
failed”. Repeating this in order to find
details will require a long turnaround time
again. A development tool with a test
feature set and its generated “protocol
test” will quickly tell, what messages have
been wrong and can support in finding the
problem source even down to the bit level.
As already demanded for the ECU design,
the ability of a test description language is
essential here as well. In contrast to the
pure conformance test tools the test
procedure needs to be extendable by ECU
specific or application specific features.

iCC 2006 CAN in Automation

06-9

This furthermore makes one independent
of the set of tests, the tool provider
implementation, and allows for future
extensions.

6 Back to the OEM

A strong argument for remaining bus
simulation is to make the system integrator
capable of starting the integration of an
ECU before all other ECUs are available.
Features like simulated network
management let the ECU think it was in a
real environment. This is also a
precondition for starting the first
integration tests. This will save time for
example if delivery delays of single ECUs
occur. The automatic tests can be applied.
Final integration will then only require
regression tests. The focus here will be on
the level of the communication tests, while
the use-case tests are more a subject of
the validation and acceptance phases.

7 Some detail aspects

The behavior of an ECU depends on its
whole environment. Essentially known
from the HIL concepts (see [1], [2]) any
test environment needs to fulfill that
aspect. As shown in Figure 3 this requires
the ability to treat all relevant bus systems,
but also to observe and control digital and
analog I/O. This includes the treatment of
standard and OEM specific system and
device descriptions like DBC (CAN), LDF
(LIN), EDS (CANopen), CDD/ODX
(Diagnostics) and many more. Besides a
GUI it shall be able to define and use user-
defined panels and an open interface to
application specific software.

Figure 3: Testing domain

For White Box tests it is desirable to have
an interface to debugging tools (Figure 4).
For example in car ECUs the RTOS OSEK
is used quite often. Here for example
debugging and control of task states is
essential.

Figure 4: White box test support
As mentioned above, for Black Box tests it
is important to have various possibilities to
efficiently describe the test activity,
sequence, and timing. This should be
selectable from scripting (Figure 5) or with
a more abstract test pattern approach
(Figure 6).

Figure 5: Scripted black box tests
In both cases the support has to include
basic bus and I/O operations like output
bus messages (CAN frames, MOST
frames, J1939 PGs etc.) but also signal
operations. The latter can be achieved by
a so-called Interaction Layer. This has the
task to map signals to the appropriate

iCC 2006 CAN in Automation

 06-10

communication entities with the correct
communication parameters (timing,
trigger) according to the system
description.
For easy treatment of timing conditions the
system has to support event conditions
with Wait constructs for messages,
environmental conditions, and signal
conditions in any combination.

Figure 6: Test pattern approach
Meanwhile XML is widely used . There are
many highly sophisticated tools for editing,
checking and formatting XML. Figure 7
shows an example for editing a test case

with Altova AuthenticDesk. The user does
not need knowledge about the XML
structure itself or about complex scripting
languages.
The open structure for tools can be utilized
for test generation tools too. Typically
domain know-how exists in various forms.
Examples for test-case generations are:
DOORS: Structuring requirements from
which test-case can be organized.
UML Tool: Use sequence and/or state
diagrams
CANdb++: Monitoring of communication
parameters like cycle times, message
DLCs, mapping of signals.
CANdela Studio and DiVa: Specify
diagnostic services and generate the
necessary tests.
DaVinci: Test mapping of all input and
output signals to ECUs.
ProCANopen: Generate complete
CANopen protocol tests.
… and many more.

8 Reporting

Last but not least – all that test support is
useless without a thorough reporting of the
results. A modern test tool will provide
automatic reporting. A typical test control

structure is
shown in Figure
8. It
substructures in
test modules
with global
invariants. Here
again the
strength of XML
can be used. By
using XML for
the test patterns

and
specifications,

groups of tests,
test cases and

sub-test-cases
including their

respective
invariants the
test tool will
control the test
execution. At the
same time it will

Figure 7: Test description in Altova AuthenticDesk (XMLSpy)

iCC 2006 CAN in Automation

06-11

set-up the report structure. The report will
be created automatically, formatted by a
style sheet. It contains the test structure,
the test cases, the overall result, and the
test passes and fails with their respective
environmental conditions.

9 Conclusion

The impact of consequent test concepts
very often is neglected in the early phases
of a project. For designing, specifying,
implementing, and executing tests near
the end of the project, the typical lack of
time in that phase is a high risk for the
project delivery date, the costs, and in
particular for the quality of the product.
Applying concepts of model-based
development, rapid prototyping, and code
generation leads to an executable test
specification.
This shifts much of the work to earlier
project phases, provides a testing
environment already before the
implementation and at the same time
avoiding double-work for test specification
changes due to design changes.
The quality of all phases is significantly
enhanced, the efficiency of the
implementation phases is increased, and
the project risk and cost is reduced.

References

[1] Siegfried Beeh, Vector Informatik: Testing
with CANoe, Vector Congress 2004

[2] Thomas Bardelang, DaimlerChrysler: CAN in
the HIL for the new Actros; Experiences in the
test of networking mechatronic systems,
Vector Symposium 2004

[3] Norbert Schlingmann, Claas: Challenges and
methods in the development process of CAN
based diagnostic systems, Symposium CAN in
Commercial Vehicles 2005

[4] Mirko Tischer, Vector Informatik: Prototyping
and testing CANopen systems, CAN
Newsletter 3/2006

[5] Vector Informatik GmbH, CANoe user
manual, 2006

Several Figures are taken from [1]

Figure 8: Test control and report structure

