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The implementation of an efficient real time networking with Controller Area Network 
(CAN) for distributed real time control in Hybrid Electric Vehicle (HEV) is presented. 
HEVs are the present potential choice for environmental friendly public transportation 
systems. Their safety and functionality can be improved and many value added 
features can be easily incorporated with CAN based distributed control. In HEV 
different electrical systems are functionally interconnected, requiring exchange of 
information accurately in real time within defined communication latency. The CAN 
controller reduces communications burden on the host CPU, thus allows to run its 
algorithms for better real time power train control. The differential physical layer 
improves   data exchange integrity under EMI from power switching systems in this 
application. The implementation methodologies for TI TMS320F2406 Digital Signal 
Processor and PIC18F4480 Micro controller based hardware with inbuilt CAN 
controllers are highlighted. An efficient mailbox filter configuration and message 
distribution scheme in different control modules in HEV as well as state machine for 
minimum boot-up process for CANopen protocol in master and slave nodes are 
detailed.   

I Introduction 

The implementation of an efficient real time 
networking with high level of data accuracy, 
low communication latency, configuration 
flexibility etc, is vital part in distributed real 
time system design and Controller Area 
Network (CAN) protocol supports this in a 
great deal. The CAN protocol has found 
wide acceptance in automotive in-vehicle 
applications due to its high performance, 
low cost and configuration flexibility.  
Though it was developed for use in 
passenger cars, it is widely used in other 
automotive sectors and also by 
manufactures of a wide range of products.  
The Hybrid Electric Vehicle (HEV) is one of 
the applications that demand the 
distributed real time control [8][9]. 
Due to environmental and fuel 
resource concerns, there is a 
growing demand for Electric 
Vehicles (EVs).  The EV powered 
solely from the onboard battery is 
an ideal zero emission vehicle, 
but can run only for a limited 
range on a single charge.  This 
limitation is overcome in a HEV 
by the introduction of a down 

sized IC Engine (ICE) for the average power 
demand and supplemented by the Battery 
for transient requirements. As HEVs 
combine the good features of both ICE and 
EVs, the emissions are reduced and fuel 
efficiency is increased due to the optimal 
operation of the ICE. When compared to 
conventional ICE powered vehicles, HEVs 
eliminate the need for clutch and variable 
gear. During vehicle deceleration energy 
can be recovered to the battery with 
regenerative braking control extending the 
range and increasing the brake liner life [9].  
Two implementations namely series HEV 
and parallel HEV are possible based on the 
configuration of the two power paths[8]. This 
paper explains the control and 
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Figure 1:  Functional block diagram of series HEV 
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communication schemes for a series HEV in     
distributed control architecture with CAN for 
a Three-wheeler application. This 
development work was carried out under the 
auspices of Ministry of Communication and 
Information Technology, Govt. of India. 

 
2 Series HEV control blocks 

The series HEV functional blocks are shown 
in Fig1. In this scheme, the ICE power is 
converted to dc electric power with the help 
of an Induction Generator and Generator 
Controller (GC).  The Battery is linked to the 
dc bus through a Bidirectional Converter 
(BC) which controls the power flow to and 
from the Battery.  The power is fed to an 
Induction Motor through a Propulsion Motor 
Controller (PMC), which drives the wheels 
through a fixed gear to match the vehicle 
speed and torque. The ICE operation is 
optimized by running at narrower speed 
range and slow application of the load 
since it is less dependent on the changing 
vehicle power demand.  
In a typical Three wheeler HEV 
implementation the control blocks and sub 
systems are distributed in the vehicle as 
shown in the Fig 2. This layout is 
formulated considering the load distribution 
and vehicle stability. As the control blocks 
are functionally unique they are 
implemented in separate hardware 
modules though PMC and GC are 
combined in the Inverter Module for better 
electrical packaging. A Dash Board (DB) 
module provides power flow control and 
user interfaces. The AC system based 
propulsion and generation schemes are 
developed considering the advantages 
over DC systems for this automotive 
application. 

2.1 Control requirements 

The functional requirements of the 
subsystems, which are basically power 
electronic modules are summarized in table 
l. Advanced propulsion technology and 

development of power electronics 
assumes significant importance in 
HEV control. These include AC 
drives with real time torque 
controller for propulsion and power 
controller for generation, power 
flow manager, compact and 
rugged induction motors, low 
maintenance battery and its 
monitoring system etc.  Digital 
Signal Processor (DSP) based real 
time controllers play a key role in 
effective system operation.  It 
provides efficient implementation 
of advanced AC drive control 

algorithms for the propulsion and 
generation. TI DSPs integrate many 
peripherals like ADCs, encoder interface, 
PWM generators, etc that are required for 
power electronics application [11]. More I/O 
optimized Microchip’s PIC micro controllers 
are ideal for modules like DB, where more 
user interface are required rather than real 
time control [12]. Further these processors 
have got support for serial communication 
interface required in this kind of distributed 
control which are detailed in the next 
section. 

 

 

Table I Functional requirements of HEV 
modules 

 

Module Functional Requirements 

ICE Supply average traction demand 

Induction 
Generator 

As starter motor during  ICE starting 
As a generator during normal operation 

GC Two quadrant AC drive (motoring, generator)  

Battery Supply transient demand and absorb regenerative 
energy 

BC Bidirectional dc-dc converter to match battery 
voltage and dc voltage  

PMC 4 quadrant AC drive 

Induction 
Motor 

Meet traction demand in forward and reverse  
As a generator for regeneration control 

DB Supervisory control and user interface 

  
  

Figure 2: Distribution of series HEV modules in 
three wheeler 
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 2.2 Data transfer requirements in series 
HEV 

To estimate the data transfer and 
control requirements, deeper knowledge 
of power electronics system functionality 
and operational modes with respect to 
vehicle operation are essential.  
The Voltage Source Inverter (VSI) 
scheme for AC drive control in GC and 
PMC, is functionally detailed in the Fig 3. 
The Inverter produces variable frequency ac 
voltage from the dc voltage source and vice 
versa. The control block requires high 
performance algorithms for effective AC 
drive control [10].  
In this three wheeler implementation the 
propulsion motor requires variable 
frequency inputs in the range 0 to 200Hz to 
control the vehicle speed from 0 to 50kmph. 
The AC drive control algorithm based on 
Space Vector Control (SVC) and PWM 
technique for sensorless operation requires 
sampling time of the order of 200 
microseconds for effective implementation 

in this frequency range. The feedback input 
requirement in the AC drive algorithm are 
motor currents, dc voltage and frequency 
reference. For effective torque response the 

motor current has to be sensed locally at 
every sampling period. Hence its interface is 
provided inside the Inverter module. The 
other control inputs like frequency 
reference, logic controls etc can be 
interfaced from other control modules 
through serial communication at a slower 
rate. Similarly the variables like actual motor 
speed, propulsion power requirement, 
inverter status can be sent to other control 
modules. Thus the control block has to 
perform two tasks namely the real time 
control and the real time communication 
thereby having significance for local and 
global control parameters. 
In addition to the local control, the control 
algorithms implemented in the subsystems 

require real time parametric data 
transfer to take care the various 
modes of operation in series HEV as 
detailed in the table II.  
During start up the ICE is cranked by 
operating induction generator as 
motor through the BC and GC. The 
heavy power requirement during 
acceleration is met with both Battery 
and ICE source. In steady cruising 
mode the propulsion demand is met 
from ICE alone and depending on 
battery condition ICE also charges the 

battery [5]. During deceleration the brake 
energy is regenerated and stored into the 
Battery through BC.  The rate of 
regeneration is controlled monitoring the 

TABLE II  Power flow in  Series HEV modes of 
operation 

Mode of Operation Power 
Sources 

Power 
Destination 

Controller in 
action 

ICE start up Battery Induction 
Generator 

BC + GC 

Vehicle Acceleration Battery + 
ICE 

Propulsion 
Motor 

BC+ GC + PMC 

Steady cruising ICE Propulsion 
Motor (+ 
Battery) 

GC + PMC (+BC) 

Regenerative 
braking 

Vehicle Deceleration 

Propulsion 
Motor 

Battery PMC + BC 

TABLE III Data exchange requirement  
Parametric Data Exchange Source Destination 

  Battery Voltage(Vbat) BC PMC,GC,DB  

  DC link Voltage (Vdc) BC PMC, GC,DB 

  ICE speed (Nice) GC DB 

  Acceleration Pedal reading (Nref) DB PMC 

  Propulsion motor speed (Npmc) PMC DB 

  Battery state of charge (Bsoc) BC DB 

  Propulsion Controller Power (Ppmc) PMC DB 

  Generator Power (Pgc) GC DB, BC 

  Generator Power reference (Pref) PMC GC 

  Probe Data (ProDat1,…ProDat9) PMC,GC, BC DB 

Logical Data Exchange(*)   

  Status of Controllers   PMC, GC,BC DB 

  ICE start command (GCst) DB GC 

  PMC start/stop command (PMCst) DB PMC 

  Emergency OFF DB PMC,GC, BC 

  Forward/Reverse command DB PMC 
(*)  Logical data for each controller is in bit level and is combined 
into a single status byte for data transfer. 

 
Figure 3: Components of a AC drive 
controller module 
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battery state of charge. Table II shows 
different functional modules that are 
involved in performing each mode of 
operation and the required parametric 
data exchange estimated in this HEV 
scheme are listed in table III.   

 
2.3  Controller Area Networking in HEV 

The implementation of an efficient real 
time networking with high level of data 
accuracy, low communication latency, 
configuration flexibility etc, is vital part in 
distributed real time system design and 
Controller Area Network (CAN) protocol 
supports this in a great deal.   The CAN 
protocol specifies versatile message 
identifiers that can be mapped to specific 
control information categories with 
predefined priority [1]. The following 
features are worth mentioning in real time 
application. 

Message Routing: The content of a 
message is named by an IDENTIFIER. The 
IDENTIFIER does not indicate the 
destination of the message, but describes 
the meaning of the data, so that all nodes in 
the network are able to decide by 
MESSAGE FILTERING whether the data is 
to be accepted. The non-destructive 
arbitration technique guarantees that 
messages are sent in order of priority and 
that no messages are lost. 

Multicast: As a consequence of the 
concept of MESSAGE FILTERING any 
number of nodes can receive and 
simultaneously act upon the same 
message. 

Message/Data Consistency: Within a CAN 
network it is guaranteed that a message is 
simultaneously accepted either by all nodes 
or by no node. If a receiver detects an error 
in the last bit that it cares about (the last but 
one bit of the EOF) it will send an error 
frame.  This will corrupt the last bit that the 
transmitter cares (the last bit of the EOF) 
and will retransmit the message.  Thus data 
consistency of a system is achieved by the 
concepts of multicast and error handling. 

Fault Confinement: CAN nodes are able 
to distinguish short disturbances from 
permanent failures. Defective nodes are 
switched off. Thus the network can still be 
effective with the healthy nodes. 

Robustness: CAN will operate in 
extremely harsh environments and the 
extensive error checking mechanisms 
ensure that any transmission errors are 
detected. The data exchange integrity under 
EMI from high power switching systems in 
applications like HEV is very important and 
the physical layer with differential busses 
take care these issues. The use of NRZ 
encoding ensures compact messages with a 
minimum number of transitions and high 
resilience to external disturbance. 
 Thus with prioritized communication of 
message, non-destructive bit-wise 
arbitration with effective error detection 
signaling, CAN efficiently supports 
distributed real-time control with a very high 
level of security in automotive applications. 
 
2.4 Control hardware implementation 

The digital control hardware design take 
care the real time control task as well as 
support for high speed CAN interface 
(ISO11898) [2]. TMS 320LF2406A DSP for 
drive control and PIC based control for I/O 
intensive are found to be an ideal choices. 
The power distribution in control hardware, 
which complains to 42V Power Net standard 
and communication software based on CiA 
standards has facilitated easy addition of 
CAN based modules for added features. 
The control hardware structure   shown in 
Fig 4 is implemented for better performance 
in most power electronic systems. 
Similar digital controller hardware is used for 
propulsion control, generator control and 
other subsystems with appropriate software 
modules to meet the specific application. 
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Figure 4: Control hardware block diagram 
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2.5 Control software structure 

As described in the system requirements, 
the two main tasks to be implemented in 
software are, the real time control and the 
real time networking. As shown in Fig 5, a 
simpler scheduler based on timer interrupt is 
considered for implementation. 
• Real Time Control task 
Depending on the type of sub module, the 
control software implemented are, 
 AC Drive control for Propulsion motor 
 AC Drive control for Generator  
 Control for Battery charging 
 Control for power flow management 
 Control Algorithms for relay logic  

• Real Time Networking task 
The networking module implements the 
algorithms for CAN interface conforming to 
CiA standards. With CAN baud rate of 
1Mbps, real time data transfer between the 
various modules can be achieved with in the 
required rate for this application. The 
network level synchronization can be also 
be easily implemented by the application 
protocol support. The coming section details 
the implementation of the application layer 
protocol for the data transfer requirements 
estimated for HEV control [6]. 

3 CANopen in series HEV 

The distributed control architecture involving 
the use of the CAN-bus envisaged for the 
HEV system is typically of the "master/slave 
monitoring and control" type. Every 

subsystem is monitored or controlled from 
one central node (the master). The 
CANopen application protocol is ideal in this 
type of environment [4]. The types of 
devices to be controlled are AC drive 
systems, dc-dc converters and similar 
power electronic systems. Many of the 
network control tasks in HEV basically 
consist of monitoring and supervisory 
control of the sub modules through 
parametric and logic data. Hence for simpler 
software implementation, the control module 
are treated as I/O modules instead of the 
usual convention of drives and motion 
control for the device profile [5] [7]. It can 
also be observed that master-slave as well 

as slave-slave data transfer are required. 
 
3.1 CANopen requirements 

The following general requirements for 
CANopen based control applications in HEV 
can be distinguished: 
The CANopen Predefined Connection Set 
can be used, although for some nodes it 
might be necessary to allow slave to slave 
communication through Process Data 
Object (PDO) linking. 
Node guarding not necessary since node 
data is read out periodically and  missing 
responses can serve to detect fatal errors in 
the node communication. However if any 
internal device errors have to be detected 
the use of the Emergency Object is 
required. 
Identifier distribution by means of SDO is 
sufficient; CAL DBT services and thus the 
extended boot-up capability are not required 
(here default id distribution is assumed). 
Setting of the Node-ID is to be done using 
jumpers or switches. 
 
 

TABLE V  PDO mapping for 
TxPDO1(SYNC) 

Control Node PDO format 
PMC Ppmc

(*) Npmc
(*) PMC status(**) 

GC Pgc
(*) Nice

(*) GC status(**) 

BC Vbac
(*) Vdc

 (**) BC status(**) 
DB Nref

(*) Pref (*) DB status(**) 
(**)  One byte data     (*) Two byte data      

 

Figure 5: Software structure for real 
time control and communication 
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3.2 PDO linking 

The CANopen predefined connection set 
supports only master-slave 
Communications. In HEV control envisaged, 
slave–slave communication is also to be 
implemented. The CANopen standard 
defines fixed COB-ID’s (default identifier) for 
the first 4 PDOs depending on the node 
number. Communication between slave 
nodes is only possible via a CANopen 
master when using these default identifiers. 
This, however, will result in an increased 
CAN bus load since data exchange between 
two slave nodes requires sending the 
message from the first slave to the master 
first and from there to the second slave. 
CANopen offers the possibility to adjust the 
CAN identifier for a given communication 
object [3]. For example, the CAN identifier 
for a TPDO can also be assigned to a 

RPDO. With this, it is possible to 
establish direct communication between 
two slave nodes without a master node. 
This assignment of CAN identifiers for 
PDOs is also called PDO linking. The 
distribution of CANopen services is listed 
in the table IV. 
 The inbuilt CAN controller in the 
TMS320LF2406A   and PIC18F4480  
has message mail boxes and filters 
which support basic CAN data 
communication[11] [12]. The two mask 
registers available are configured to 
optimize the data reception in the 
controller itself with filter configuration as 
shown in Fig 6. One filter with COB-ID 
masked is associated with the first two 

receive mail boxes. This facilitates reception 

of message intended for the Node as 
well as broadcast messages (Node id 0) 
respectively in the mail boxes. Another 
filter with Node ID masked, associated 
with other two mailboxes facilitate the 
reception of PDO messages and 
emergency messages from slaves also. 
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Figure 7: State machine implementation 
 

TABLE VI  PDO mapping for RxPDO1 
Control Node PDO format 

PMC PMCst (*) Vbat
(**) Nref

(**) 

GC GCst (*) Vbat
(**)  

BC BCst (*) Pref
(**)  

TABLE VII  PDO mapping for 
TxPDO2(RTR) 

Control Node PDO format 

PMC ProDat1(**) ProDat2(**) ProDat3(**) 
GC ProDat4(**) ProDat5(**) ProDat6(**) 
BC ProDat7(**) ProDat8(**) ProDat9(**) 

TABLE VIII  PDO mapping for RxPDO2 
Control Node PDO format 

PMC Pref
(**)   

GC Pgc
(**)   

BC Vbat
(**) Vdc

(**)  

1st Tx PDO Node ID 

2nd Tx PDO Node ID 
Rx COB ID 0 

Emergency 
2nd TxPDO Node ID 

Masked Bits 

Rx COB ID Node ID 

Node ID 

Master   CAN bus                 Slave 

Fun Code Node ID 

Fun Code Node ID 

Figure 6: Filter configuration for 
TMS320F2406 ECAN module 
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3.3 State machine implementation  

The state machine implementation for 
minimum boot-up  process for master, slave 
nodes and its corresponding  CANopen 
services are highlighted in Fig 7. Further, 
the operations of master and slave nodes 
during power up are to be guaranteed 
across the network as the nodes may not be 
powered simultaneously. 
Master power ON first: As per the above 
algorithm master gets into preoperational 
state and send Node guarding message to 
slaves and since no slave is powered up, 
there will not be any acknowledge for the 
message frame and the master node 
increments error count for no ACK, but it will 
be limited to 127 (error number will not be 
increased above 127 for ACK error). 
However it continues to send the node 
guard message. Once the slave gets 
powered up, it assert the ACK field for the 
node guard message and the operations  
continue normally. 

Slave power ON first:  The slave will 
get into preoperational state and wait for 
message from master . Once the master 
gets powered up the operations  continue 
normally. 
 

3.4 Sampling requirement for communication 

The data distribution in one communication 
sampling is as shown in Fig 8. At 1Mbps 
CAN baud rate, a sampling rate in the order 
of 2-5 milisec across the network is possible 
in this configuration with each module data 
transfer taking approximately 100 micosec   
The master issues SYNC messages at 
every sampling period. The slaves respond 
with the corresponding TxPDO for periodic 
data. The master then sends periodic data 

for each node through RxPDO. If 
more data are required from any slave 
(mainly debug information during 
developments and system testing) it 
will be requested with an RTR and 
slave respond with corresponding 
TxPDO. The slave to slave data will 
be transmitted through RxPDO2 
periodically.  
 

 

3.5 Object dictionary (OD) 

The object dictionary of a CANopen system 
has three parts namely a communication, a 
device-profile and a device-specific 
(manufacturer-specific). The OD for this 
application is based on the CiA device 
profile for I/O modules DSP-401[5].  
The device profile description for various 
modules as implemented in master is 
detailed in table IV. The corresponding PDO 
distribution is modified from the 
specification, to get an optimum data 
transfer between the HEV modules as 
shown in table [V- VIII]. 

 

TABLE IV CANOpen services and objects 

CAN-Open Objects Function 

TxPDO1   
TxPDO2 
RxPDO1 
RxPDO2 
NMT 
SYNC 
NMT Node Guard 
Emergency 
SDO1  

Slave-Master Periodic transmission 
Slave- Master RTR transmission  
Master-Slave Periodic transmission 
Slave-Slave Periodic transmission 
State machine control 
Synchronization of periodic  transmissions 
Check Slave status 
Error/Abnormal condition 
Configuration  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 8: Data distribution in 
communication sampling 
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4 CAN based embedded controller 

Two types of digital controllers are 
developed for the HEV modules. For power 
electronics control the design is based on 
TMS320LF2406A low voltage fixed point 
DSP from TI. A CPLD based circuit for dead 
band generation and fault interlock for gate 
control signals are incorporated. This 
controller is used in PMC, GC and BC.  
For controller based on Microchip’s 
PIC18LF4480, provision for more I/O 
interface and relay logic control is provided, 
which is used in DB. Multilayer PCB with on 
board SMPS is considered for minimum 
EMI. The two controllers are as shown in 
the Fig 9. All low voltage digital and analog 
signals from the controller are interfaced 
externally through Peripheral Interface PCB. 
 

 
TI DSP based Controller 

 
Microchip PIC based controller 

Figure 9: Control hardware 
5 Conclusion 

The implementation methodology for CAN 
based systems for real time control 
application is detailed for series HEV 
environment. The real time control 
requirements are evaluated for Three 
wheeler application and configurations of 
the systems for CANopen (master and 
slave) protocol structure is developed. The 
rate of reliable data transfer determines the 
performance of the vehicle. This data 
transfer is achieved through effective error 
detection and signaling mechanism with 
CAN and thereby the vehicle safety and 
functionality are improved. The reliable 
performance of the communication system 
under high level switching interference from 
power converter PWM signals is noticeable. 
Further, the CAN network facilitated in the 
vehicle performance evaluations like 
acceleration, maximum speed, range, 
gradient fuel consumption etc., with a data 
acquisition module interfaced in the 
network. This support the CAN feature that 
any node can be added to the network 
without affecting the real time performance 
of the network as long as the node is a 
consumer. Matching performance with the 
conventional ICE driven vehicle and better 
fuel efficiency are achieved. 
HEVs are a potential choice for 
environmental friendly public transportation 
systems and many value added features 
can be easily incorporated with CAN based 
distributed control. 

TABLE IV  Device profile description 

Index Object 
code Name Data type Attri

butes 

Dash Board 

6000h VAR Acceleration Pedal 
reading INTEGER16 rw 

Propulsion Motor Controller 
6010h VAR PMC Status UNSIGNED8 rw 

6011h VAR Commands for PMC  UNSIGNED8 rw 

6012h VAR DC link voltage INTEGER16 rw 

6013h VAR Propulsion Motor 
Speed INTEGER16 rw 

6014h VAR Propulsion controller 
power INTEGER16 rw 

Generator  Controller 
6020h VAR GC   Status UNSIGNED8 rw 

6021h VAR Commands for GC UNSIGNED8 rw 

6022h VAR ICE speed INTEGER16 rw 

6023h VAR Generator controller 
power INTEGER16 rw 

6024h VAR Battery voltage INTEGER16 rw 

Battery Charger 
6030h VAR BC Status UNSIGNED8 rw 

6031h VAR Commands for BC UNSIGNED8 rw 

6032h VAR Battery state of charge INTEGER16 rw 

6033h VAR Battery parameters INTEGER16 rw 
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