
iCC 2006 CAN in Automation

01-14

CAN-based distributed real-time control in hybrid electric
vehicles

Renji V Chacko, Dr. Z V Lakaparampil, Chandrasekar.V, Sigi C Joseph

Centre for Development of Advanced Computing, Thiruvananthapuram

 A Scientific Society of the Ministry of Communication and Information Technology, Govt. of India

The implementation of an efficient real time networking with Controller Area Network
(CAN) for distributed real time control in Hybrid Electric Vehicle (HEV) is presented.
HEVs are the present potential choice for environmental friendly public transportation
systems. Their safety and functionality can be improved and many value added
features can be easily incorporated with CAN based distributed control. In HEV
different electrical systems are functionally interconnected, requiring exchange of
information accurately in real time within defined communication latency. The CAN
controller reduces communications burden on the host CPU, thus allows to run its
algorithms for better real time power train control. The differential physical layer
improves data exchange integrity under EMI from power switching systems in this
application. The implementation methodologies for TI TMS320F2406 Digital Signal
Processor and PIC18F4480 Micro controller based hardware with inbuilt CAN
controllers are highlighted. An efficient mailbox filter configuration and message
distribution scheme in different control modules in HEV as well as state machine for
minimum boot-up process for CANopen protocol in master and slave nodes are
detailed.

I Introduction

The implementation of an efficient real time
networking with high level of data accuracy,
low communication latency, configuration
flexibility etc, is vital part in distributed real
time system design and Controller Area
Network (CAN) protocol supports this in a
great deal. The CAN protocol has found
wide acceptance in automotive in-vehicle
applications due to its high performance,
low cost and configuration flexibility.
Though it was developed for use in
passenger cars, it is widely used in other
automotive sectors and also by
manufactures of a wide range of products.
The Hybrid Electric Vehicle (HEV) is one of
the applications that demand the
distributed real time control [8][9].
Due to environmental and fuel
resource concerns, there is a
growing demand for Electric
Vehicles (EVs). The EV powered
solely from the onboard battery is
an ideal zero emission vehicle,
but can run only for a limited
range on a single charge. This
limitation is overcome in a HEV
by the introduction of a down

sized IC Engine (ICE) for the average power
demand and supplemented by the Battery
for transient requirements. As HEVs
combine the good features of both ICE and
EVs, the emissions are reduced and fuel
efficiency is increased due to the optimal
operation of the ICE. When compared to
conventional ICE powered vehicles, HEVs
eliminate the need for clutch and variable
gear. During vehicle deceleration energy
can be recovered to the battery with
regenerative braking control extending the
range and increasing the brake liner life [9].
Two implementations namely series HEV
and parallel HEV are possible based on the
configuration of the two power paths[8]. This
paper explains the control and

ICE

Electric

Generator

PMC

~

=
Electric

Motor

=

~

=

=
Battery

Pack

BC

GC
Fixed

Gear

Figure 1: Functional block diagram of series HEV

iCC 2006 CAN in Automation

01-15

communication schemes for a series HEV in
distributed control architecture with CAN for
a Three-wheeler application. This
development work was carried out under the
auspices of Ministry of Communication and
Information Technology, Govt. of India.

2 Series HEV control blocks

The series HEV functional blocks are shown
in Fig1. In this scheme, the ICE power is
converted to dc electric power with the help
of an Induction Generator and Generator
Controller (GC). The Battery is linked to the
dc bus through a Bidirectional Converter
(BC) which controls the power flow to and
from the Battery. The power is fed to an
Induction Motor through a Propulsion Motor
Controller (PMC), which drives the wheels
through a fixed gear to match the vehicle
speed and torque. The ICE operation is
optimized by running at narrower speed
range and slow application of the load
since it is less dependent on the changing
vehicle power demand.
In a typical Three wheeler HEV
implementation the control blocks and sub
systems are distributed in the vehicle as
shown in the Fig 2. This layout is
formulated considering the load distribution
and vehicle stability. As the control blocks
are functionally unique they are
implemented in separate hardware
modules though PMC and GC are
combined in the Inverter Module for better
electrical packaging. A Dash Board (DB)
module provides power flow control and
user interfaces. The AC system based
propulsion and generation schemes are
developed considering the advantages
over DC systems for this automotive
application.

2.1 Control requirements

The functional requirements of the
subsystems, which are basically power
electronic modules are summarized in table
l. Advanced propulsion technology and

development of power electronics
assumes significant importance in
HEV control. These include AC
drives with real time torque
controller for propulsion and power
controller for generation, power
flow manager, compact and
rugged induction motors, low
maintenance battery and its
monitoring system etc. Digital
Signal Processor (DSP) based real
time controllers play a key role in
effective system operation. It
provides efficient implementation
of advanced AC drive control

algorithms for the propulsion and
generation. TI DSPs integrate many
peripherals like ADCs, encoder interface,
PWM generators, etc that are required for
power electronics application [11]. More I/O
optimized Microchip’s PIC micro controllers
are ideal for modules like DB, where more
user interface are required rather than real
time control [12]. Further these processors
have got support for serial communication
interface required in this kind of distributed
control which are detailed in the next
section.

Table I Functional requirements of HEV
modules

Module Functional Requirements

ICE Supply average traction demand

Induction
Generator

As starter motor during ICE starting
As a generator during normal operation

GC Two quadrant AC drive (motoring, generator)

Battery Supply transient demand and absorb regenerative
energy

BC Bidirectional dc-dc converter to match battery
voltage and dc voltage

PMC 4 quadrant AC drive

Induction
Motor

Meet traction demand in forward and reverse
As a generator for regeneration control

DB Supervisory control and user interface

Figure 2: Distribution of series HEV modules in
three wheeler

iCC 2006 CAN in Automation

01-16

 2.2 Data transfer requirements in series
HEV

To estimate the data transfer and
control requirements, deeper knowledge
of power electronics system functionality
and operational modes with respect to
vehicle operation are essential.
The Voltage Source Inverter (VSI)
scheme for AC drive control in GC and
PMC, is functionally detailed in the Fig 3.
The Inverter produces variable frequency ac
voltage from the dc voltage source and vice
versa. The control block requires high
performance algorithms for effective AC
drive control [10].
In this three wheeler implementation the
propulsion motor requires variable
frequency inputs in the range 0 to 200Hz to
control the vehicle speed from 0 to 50kmph.
The AC drive control algorithm based on
Space Vector Control (SVC) and PWM
technique for sensorless operation requires
sampling time of the order of 200
microseconds for effective implementation

in this frequency range. The feedback input
requirement in the AC drive algorithm are
motor currents, dc voltage and frequency
reference. For effective torque response the

motor current has to be sensed locally at
every sampling period. Hence its interface is
provided inside the Inverter module. The
other control inputs like frequency
reference, logic controls etc can be
interfaced from other control modules
through serial communication at a slower
rate. Similarly the variables like actual motor
speed, propulsion power requirement,
inverter status can be sent to other control
modules. Thus the control block has to
perform two tasks namely the real time
control and the real time communication
thereby having significance for local and
global control parameters.
In addition to the local control, the control
algorithms implemented in the subsystems

require real time parametric data
transfer to take care the various
modes of operation in series HEV as
detailed in the table II.
During start up the ICE is cranked by
operating induction generator as
motor through the BC and GC. The
heavy power requirement during
acceleration is met with both Battery
and ICE source. In steady cruising
mode the propulsion demand is met
from ICE alone and depending on
battery condition ICE also charges the

battery [5]. During deceleration the brake
energy is regenerated and stored into the
Battery through BC. The rate of
regeneration is controlled monitoring the

TABLE II Power flow in Series HEV modes of
operation

Mode of Operation Power
Sources

Power
Destination

Controller in
action

ICE start up Battery Induction
Generator

BC + GC

Vehicle Acceleration Battery +
ICE

Propulsion
Motor

BC+ GC + PMC

Steady cruising ICE Propulsion
Motor (+
Battery)

GC + PMC (+BC)

Regenerative
braking

Vehicle Deceleration

Propulsion
Motor

Battery PMC + BC

TABLE III Data exchange requirement
Parametric Data Exchange Source Destination

 Battery Voltage(Vbat) BC PMC,GC,DB

 DC link Voltage (Vdc) BC PMC, GC,DB

 ICE speed (Nice) GC DB

 Acceleration Pedal reading (Nref) DB PMC

 Propulsion motor speed (Npmc) PMC DB

 Battery state of charge (Bsoc) BC DB

 Propulsion Controller Power (Ppmc) PMC DB

 Generator Power (Pgc) GC DB, BC

 Generator Power reference (Pref) PMC GC

 Probe Data (ProDat1,…ProDat9) PMC,GC, BC DB

Logical Data Exchange(*)

 Status of Controllers PMC, GC,BC DB

 ICE start command (GCst) DB GC

 PMC start/stop command (PMCst) DB PMC

 Emergency OFF DB PMC,GC, BC

 Forward/Reverse command DB PMC
(*) Logical data for each controller is in bit level and is combined
into a single status byte for data transfer.

Figure 3: Components of a AC drive
controller module

iCC 2006 CAN in Automation

01-17

battery state of charge. Table II shows
different functional modules that are
involved in performing each mode of
operation and the required parametric
data exchange estimated in this HEV
scheme are listed in table III.

2.3 Controller Area Networking in HEV

The implementation of an efficient real
time networking with high level of data
accuracy, low communication latency,
configuration flexibility etc, is vital part in
distributed real time system design and
Controller Area Network (CAN) protocol
supports this in a great deal. The CAN
protocol specifies versatile message
identifiers that can be mapped to specific
control information categories with
predefined priority [1]. The following
features are worth mentioning in real time
application.

Message Routing: The content of a
message is named by an IDENTIFIER. The
IDENTIFIER does not indicate the
destination of the message, but describes
the meaning of the data, so that all nodes in
the network are able to decide by
MESSAGE FILTERING whether the data is
to be accepted. The non-destructive
arbitration technique guarantees that
messages are sent in order of priority and
that no messages are lost.

Multicast: As a consequence of the
concept of MESSAGE FILTERING any
number of nodes can receive and
simultaneously act upon the same
message.

Message/Data Consistency: Within a CAN
network it is guaranteed that a message is
simultaneously accepted either by all nodes
or by no node. If a receiver detects an error
in the last bit that it cares about (the last but
one bit of the EOF) it will send an error
frame. This will corrupt the last bit that the
transmitter cares (the last bit of the EOF)
and will retransmit the message. Thus data
consistency of a system is achieved by the
concepts of multicast and error handling.

Fault Confinement: CAN nodes are able
to distinguish short disturbances from
permanent failures. Defective nodes are
switched off. Thus the network can still be
effective with the healthy nodes.

Robustness: CAN will operate in
extremely harsh environments and the
extensive error checking mechanisms
ensure that any transmission errors are
detected. The data exchange integrity under
EMI from high power switching systems in
applications like HEV is very important and
the physical layer with differential busses
take care these issues. The use of NRZ
encoding ensures compact messages with a
minimum number of transitions and high
resilience to external disturbance.
 Thus with prioritized communication of
message, non-destructive bit-wise
arbitration with effective error detection
signaling, CAN efficiently supports
distributed real-time control with a very high
level of security in automotive applications.

2.4 Control hardware implementation

The digital control hardware design take
care the real time control task as well as
support for high speed CAN interface
(ISO11898) [2]. TMS 320LF2406A DSP for
drive control and PIC based control for I/O
intensive are found to be an ideal choices.
The power distribution in control hardware,
which complains to 42V Power Net standard
and communication software based on CiA
standards has facilitated easy addition of
CAN based modules for added features.
The control hardware structure shown in
Fig 4 is implemented for better performance
in most power electronic systems.
Similar digital controller hardware is used for
propulsion control, generator control and
other subsystems with appropriate software
modules to meet the specific application.

42V

Bus

3.3V

15V

SMPS

42V

SMPS

15V,

5V

DSP based Controller
CAN

interface

JTAG

Peripheral Interface
Gate

drive

Digital/

Analog

I/O

SCI

RS232
SPI

CAN

Bus

Gate

Signals

PC Interface

Figure 4: Control hardware block diagram

iCC 2006 CAN in Automation

01-18

2.5 Control software structure

As described in the system requirements,
the two main tasks to be implemented in
software are, the real time control and the
real time networking. As shown in Fig 5, a
simpler scheduler based on timer interrupt is
considered for implementation.
• Real Time Control task
Depending on the type of sub module, the
control software implemented are,
 AC Drive control for Propulsion motor
 AC Drive control for Generator
 Control for Battery charging
 Control for power flow management
 Control Algorithms for relay logic

• Real Time Networking task
The networking module implements the
algorithms for CAN interface conforming to
CiA standards. With CAN baud rate of
1Mbps, real time data transfer between the
various modules can be achieved with in the
required rate for this application. The
network level synchronization can be also
be easily implemented by the application
protocol support. The coming section details
the implementation of the application layer
protocol for the data transfer requirements
estimated for HEV control [6].

3 CANopen in series HEV

The distributed control architecture involving
the use of the CAN-bus envisaged for the
HEV system is typically of the "master/slave
monitoring and control" type. Every

subsystem is monitored or controlled from
one central node (the master). The
CANopen application protocol is ideal in this
type of environment [4]. The types of
devices to be controlled are AC drive
systems, dc-dc converters and similar
power electronic systems. Many of the
network control tasks in HEV basically
consist of monitoring and supervisory
control of the sub modules through
parametric and logic data. Hence for simpler
software implementation, the control module
are treated as I/O modules instead of the
usual convention of drives and motion
control for the device profile [5] [7]. It can
also be observed that master-slave as well

as slave-slave data transfer are required.

3.1 CANopen requirements

The following general requirements for
CANopen based control applications in HEV
can be distinguished:
The CANopen Predefined Connection Set
can be used, although for some nodes it
might be necessary to allow slave to slave
communication through Process Data
Object (PDO) linking.
Node guarding not necessary since node
data is read out periodically and missing
responses can serve to detect fatal errors in
the node communication. However if any
internal device errors have to be detected
the use of the Emergency Object is
required.
Identifier distribution by means of SDO is
sufficient; CAL DBT services and thus the
extended boot-up capability are not required
(here default id distribution is assumed).
Setting of the Node-ID is to be done using
jumpers or switches.

TABLE V PDO mapping for
TxPDO1(SYNC)

Control Node PDO format
PMC Ppmc

(*) Npmc
(*) PMC status(**)

GC Pgc
(*) Nice

(*) GC status(**)

BC Vbac
(*) Vdc

 (**) BC status(**)
DB Nref

(*) Pref (*) DB status(**)
(**) One byte data (*) Two byte data

Figure 5: Software structure for real
time control and communication

AC drive
Application

CAN driver

Variable/ Data

Data updating
(by application)

Software
execution

Data updating
(by CAN)

CAN Bus

iCC 2006 CAN in Automation

01-19

3.2 PDO linking

The CANopen predefined connection set
supports only master-slave
Communications. In HEV control envisaged,
slave–slave communication is also to be
implemented. The CANopen standard
defines fixed COB-ID’s (default identifier) for
the first 4 PDOs depending on the node
number. Communication between slave
nodes is only possible via a CANopen
master when using these default identifiers.
This, however, will result in an increased
CAN bus load since data exchange between
two slave nodes requires sending the
message from the first slave to the master
first and from there to the second slave.
CANopen offers the possibility to adjust the
CAN identifier for a given communication
object [3]. For example, the CAN identifier
for a TPDO can also be assigned to a

RPDO. With this, it is possible to
establish direct communication between
two slave nodes without a master node.
This assignment of CAN identifiers for
PDOs is also called PDO linking. The
distribution of CANopen services is listed
in the table IV.
 The inbuilt CAN controller in the
TMS320LF2406A and PIC18F4480
has message mail boxes and filters
which support basic CAN data
communication[11] [12]. The two mask
registers available are configured to
optimize the data reception in the
controller itself with filter configuration as
shown in Fig 6. One filter with COB-ID
masked is associated with the first two

receive mail boxes. This facilitates reception

of message intended for the Node as
well as broadcast messages (Node id 0)
respectively in the mail boxes. Another
filter with Node ID masked, associated
with other two mailboxes facilitate the
reception of PDO messages and
emergency messages from slaves also.

Initialization

(Automatic)

Preoperational

After all slave

nodes are in

preoperational

 are

Initialization

(Automatic)

Preoperational

After receiving

 start remote node

 are in

Operational
Operational

Master Slave

Node Gaurd

Reply

Start Remote

Node

PDO

Figure 7: State machine implementation

TABLE VI PDO mapping for RxPDO1
Control Node PDO format

PMC PMCst (*) Vbat
(**) Nref

(**)

GC GCst (*) Vbat
(**)

BC BCst (*) Pref
(**)

TABLE VII PDO mapping for
TxPDO2(RTR)

Control Node PDO format

PMC ProDat1(**) ProDat2(**) ProDat3(**)
GC ProDat4(**) ProDat5(**) ProDat6(**)
BC ProDat7(**) ProDat8(**) ProDat9(**)

TABLE VIII PDO mapping for RxPDO2
Control Node PDO format

PMC Pref
(**)

GC Pgc
(**)

BC Vbat
(**) Vdc

(**)

1st Tx PDO Node ID

2nd Tx PDO Node ID
Rx COB ID 0

Emergency
2nd TxPDO Node ID

Masked Bits

Rx COB ID Node ID

Node ID

Master CAN bus Slave

Fun Code Node ID

Fun Code Node ID

Figure 6: Filter configuration for
TMS320F2406 ECAN module

iCC 2006 CAN in Automation

01-20

3.3 State machine implementation

The state machine implementation for
minimum boot-up process for master, slave
nodes and its corresponding CANopen
services are highlighted in Fig 7. Further,
the operations of master and slave nodes
during power up are to be guaranteed
across the network as the nodes may not be
powered simultaneously.
Master power ON first: As per the above
algorithm master gets into preoperational
state and send Node guarding message to
slaves and since no slave is powered up,
there will not be any acknowledge for the
message frame and the master node
increments error count for no ACK, but it will
be limited to 127 (error number will not be
increased above 127 for ACK error).
However it continues to send the node
guard message. Once the slave gets
powered up, it assert the ACK field for the
node guard message and the operations
continue normally.

Slave power ON first: The slave will
get into preoperational state and wait for
message from master . Once the master
gets powered up the operations continue
normally.

3.4 Sampling requirement for communication

The data distribution in one communication
sampling is as shown in Fig 8. At 1Mbps
CAN baud rate, a sampling rate in the order
of 2-5 milisec across the network is possible
in this configuration with each module data
transfer taking approximately 100 micosec
The master issues SYNC messages at
every sampling period. The slaves respond
with the corresponding TxPDO for periodic
data. The master then sends periodic data

for each node through RxPDO. If
more data are required from any slave
(mainly debug information during
developments and system testing) it
will be requested with an RTR and
slave respond with corresponding
TxPDO. The slave to slave data will
be transmitted through RxPDO2
periodically.

3.5 Object dictionary (OD)

The object dictionary of a CANopen system
has three parts namely a communication, a
device-profile and a device-specific
(manufacturer-specific). The OD for this
application is based on the CiA device
profile for I/O modules DSP-401[5].
The device profile description for various
modules as implemented in master is
detailed in table IV. The corresponding PDO
distribution is modified from the
specification, to get an optimum data
transfer between the HEV modules as
shown in table [V- VIII].

TABLE IV CANOpen services and objects

CAN-Open Objects Function

TxPDO1
TxPDO2
RxPDO1
RxPDO2
NMT
SYNC
NMT Node Guard
Emergency
SDO1

Slave-Master Periodic transmission
Slave- Master RTR transmission
Master-Slave Periodic transmission
Slave-Slave Periodic transmission
State machine control
Synchronization of periodic transmissions
Check Slave status
Error/Abnormal condition
Configuration

Figure 8: Data distribution in
communication sampling

SYNC

TxPDO1

TxPDO
1

TxPDO1

RxPDO1

GC
PMC BC TxPDO2

TxPDO2

TxPDO2

RTR

RxPDO2

RxPDO2

RxPDO2

SYNC

Ts

Master
(DB)

PMC

GC

BC

iCC 2006 CAN in Automation

01-21

4 CAN based embedded controller

Two types of digital controllers are
developed for the HEV modules. For power
electronics control the design is based on
TMS320LF2406A low voltage fixed point
DSP from TI. A CPLD based circuit for dead
band generation and fault interlock for gate
control signals are incorporated. This
controller is used in PMC, GC and BC.
For controller based on Microchip’s
PIC18LF4480, provision for more I/O
interface and relay logic control is provided,
which is used in DB. Multilayer PCB with on
board SMPS is considered for minimum
EMI. The two controllers are as shown in
the Fig 9. All low voltage digital and analog
signals from the controller are interfaced
externally through Peripheral Interface PCB.

TI DSP based Controller

Microchip PIC based controller

Figure 9: Control hardware
5 Conclusion

The implementation methodology for CAN
based systems for real time control
application is detailed for series HEV
environment. The real time control
requirements are evaluated for Three
wheeler application and configurations of
the systems for CANopen (master and
slave) protocol structure is developed. The
rate of reliable data transfer determines the
performance of the vehicle. This data
transfer is achieved through effective error
detection and signaling mechanism with
CAN and thereby the vehicle safety and
functionality are improved. The reliable
performance of the communication system
under high level switching interference from
power converter PWM signals is noticeable.
Further, the CAN network facilitated in the
vehicle performance evaluations like
acceleration, maximum speed, range,
gradient fuel consumption etc., with a data
acquisition module interfaced in the
network. This support the CAN feature that
any node can be added to the network
without affecting the real time performance
of the network as long as the node is a
consumer. Matching performance with the
conventional ICE driven vehicle and better
fuel efficiency are achieved.
HEVs are a potential choice for
environmental friendly public transportation
systems and many value added features
can be easily incorporated with CAN based
distributed control.

TABLE IV Device profile description

Index Object
code Name Data type Attri

butes

Dash Board

6000h VAR Acceleration Pedal
reading INTEGER16 rw

Propulsion Motor Controller
6010h VAR PMC Status UNSIGNED8 rw

6011h VAR Commands for PMC UNSIGNED8 rw

6012h VAR DC link voltage INTEGER16 rw

6013h VAR Propulsion Motor
Speed INTEGER16 rw

6014h VAR Propulsion controller
power INTEGER16 rw

Generator Controller
6020h VAR GC Status UNSIGNED8 rw

6021h VAR Commands for GC UNSIGNED8 rw

6022h VAR ICE speed INTEGER16 rw

6023h VAR Generator controller
power INTEGER16 rw

6024h VAR Battery voltage INTEGER16 rw

Battery Charger
6030h VAR BC Status UNSIGNED8 rw

6031h VAR Commands for BC UNSIGNED8 rw

6032h VAR Battery state of charge INTEGER16 rw

6033h VAR Battery parameters INTEGER16 rw

iCC 2006 CAN in Automation

01-22

References

[1] Robert Bosch GmbH, CAN Specification 2.0

Part B, September 1991
[2] CiA/DS 102, CAN Physical Layer for Industrial

Applications, April 1994
[3] CAN-in-Automation, CANopen, CAL-based

Communication Profile for Industrial Systems,
CiA DS-301, Version 4.0, June 16 1999.

[4] H.Boterenbrood, CANopen - high-level protocol
for CAN-bus, Version 3.0, NIKHEF internal
documentation, March 20, 2000

[5] CAN-in-Automation CAN open Device Profile
for I/O Modules CiA DSP- 401 vertion 1.4
Dec1996.

[6] CAN-in-Automation CAL,CAN Application
layer for Industrial Applications CiA draft
standard DS-201 to DS 207 Vertion 1.1 Feb
1996.

[7] CAN-in-Automation CAN open Device Profile
for Drives and motion control CiA DSP- 402
vertion 1.0 july 2002

[8] Ali Emadi, Kaushik Rajashekara, Sheldon S.
Williamson, Srdjan M.Lukic, “ Topological
Overview of Hybrid Electric and Fuel Cell
Vehicular Power System Architectures and
Configurations,” IEEE Transactions on
Vehicular Technology, Vol. 54, NO. 3, May
2005

[9] Z.V.Lakaparampil, K.A.Fathima,Gautam Poddar,
Renji.V.Chacko,
B.Sreekumari,V.K.Neelakandhan, “Simulation
of HEV with typical driving cycle for a crowded
city application application.”9th European
Conference on Power Electronics and
Applications, Graz, Austria, August 2001

[10] Werner Leonhard, “Control of Electric Drives,”
Third edition, Springer 2001.

[11] TMS 320C2xx User’s Guide, Texas Instruments
Inc. 2000.

[12] PIC 18F44xx User’s Guide, Microchip Inc.
2004.

