
iCC 2005 CAN in Automation

06-1

Comparison of CAN Gateway Modules for
Automotive and Industrial Control Applications

Jan Taube1,2, Florian Hartwich1, Helmut Beikirch2

1Robert Bosch GmbH Reutlingen, 2University of Rostock

Bus architectures with up to five independent CAN channels are used in today's auto-
motive and industrial control systems. Caused by the rising numbers of sensors, actu-
ators and electronic control units over the last years, modern control concepts demand
devices supporting cross-linking of these channels. This interconnection is realized
with a CAN gateway that connects several CAN buses between sub networks at differ-
ent speeds.

Current gateway implementations are based on one of two concepts. The one concept
is an application-specific multi-channel CAN controller with shared message object
memory. This concept is inflexible regarding the gateway structure, especially the
number of CAN channels, but it enables the transfer of messages between the net-
works without causing a high load on the host CPU. The other concept is a set of single
channel CAN controllers served by a message handling software on the host CPU. This
implementation is more flexible regarding the gateway structure, but the load on the
CPU depends on the combined bus traffic of all connected CAN networks. Starting
from these two solutions, a new concept has been developed, combining the advan-
tages of a flexible structure with a low CPU load.

In this paper, the three concepts are compared and advantages/disadvantages are
shown. In addition, problems in the design of gateways are discussed.

Introduction
The increased complexity of automotive and
industrial networks and the need for data
transparency and information exchange
within the overall system led to the introduc-
tion of gateways.

Theoretically, the term gateway is not quite
correctly used in automotive applications. In
the literature, the term „gateway” is used for
a network node of a communication network
equipped for interfacing with another network
that uses different protocols. It may contain
devices such as protocol translation, rate
converters and signal translators to provide
system interoperability.

In that context, the term „bridge” is used to
describe a device of a communication sys-
tem that links or routes signals from one bus
or network to another, to extend the distance
span and the capacity of a single network. It
does not modify packets or messages, it only
reads them and forwards those with destina-
tions not on the same segment of the net-
work as the transmitter.

In automotive and industrial control applica-
tions, the term gateway is preferred even
though the data is transferred between net-
works using the same protocol, because
these gateways perform more functions than
the forwarding of messages.

These functions [5] can/must be message fil-
tering (to prevent the overload of a low-
speed network when transferring messages
from a high-speed network), message trans-
fers with identifier translation, message inte-
gration (combining parts of the data of
several messages into a new message), and
the synchronisation of time-triggered net-
works (when implemented) to guarantee that
the information is updated on time.

In general, the gateway functionality could be
implemented in software, as long as several
CAN modules are available in the ECU. But a
large amount of messages would cause a
high load on the CPU, leaving less perform-
ance for the ECU control applications until
real-time operation can no longer be guaran-
teed.



iCC 2005 CAN in Automation

06-2

Therefore dedicated gateways have to be
developed with the objective of reducing the
demands on the CPU performance. How-
ever, there is not one single solution fitting for
all applications; a concept is required that
can be easily adapted to different demands.

This paper wants to compare available gate-
way implementations with a new innovative
structure that combines the advantages of
both gateway concepts.

1 Gateway Implementations

Gateway implementations which can be
found in present-day automotive and indus-
trial applications are based on one of two
concepts. The first concept is a set of dis-
crete channel CAN controllers served by a
message handling software on the host
CPU. This concept is flexible regarding the
number of CAN channels, but a high-per-
formance host CPU is required to ensure
real-time operation at full bus-load.

The second concept is an application spe-
cific complex channel CAN controller. This
concept is inflexible regarding the gateway
structure, especially the number of CAN
channels. Furthermore such gateways need
elaborate control mechanisms. However, this
structure supports the transfer of messages
to other networks without causing a high
load on the host CPU.

A third concept is the new modular gateway.
These gateway concepts will be described in
the following text.

Discrete Channel Gateway

The most distributed gateway concept is the
discrete channel gateway. This gateway con-
sists of the components CPU, CPU Periph-
eral Bus and several single channel CAN
modules (Figure 1).

There are different implementations of this
gateway concept available, depending on the
preferences of the manufacturers. The CPU
may be a CISC or RISC machine. In most
applications, its software controls not only
the gateway function, but may also include
some other tasks. Each CAN module is con-
nected to the CPU via the CPU’s peripheral
bus. During the gateway operation, the CPU
needs to read all necessary control informa-

tion and received message objects over the
peripheral bus from one CAN module and
then writes the same data over the periph-
eral bus to some other CAN module(s). Con-
current message transfer requests from
different CAN channels are served sequen-
tially.

Figure 1: Structure of discrete channel gateway
modules

The number of CAN channels connected to
the CPU’s peripheral bus can easily be
adapted to actual requirements, but a rising
number of CAN channels will increase the
CPU load even if the CAN bus-load remains
unchanged.

Complex Channel Gateway

Figure 2: Structure of complex channel gateway
modules

The complex channel gateway, which was
designed in the last years, is a concept to

C
P

U
 In

te
rf

ac
e CAN Core

Message
RAM

C
P

U
 In

te
rf

ac
e CAN Core

Message
RAM

C
P

U
 In

te
rf

ac
e CAN Core

Message
RAM

...

Tx
Rx

Tx
Rx

Tx
Rx

CPU

C
P

U
 P

er
ip

he
ra

l B
us

CAN 1

...

Tx

Rx

CAN 2
Tx

Rx

CAN n
Tx

Rx

Shared
Message
Object

Memory

Link
Control

CAN Control

D
at

a

A
dd

re
ss

C
on

tr
ol

CPU Interface



iCC 2005 CAN in Automation

06-3

reduce the demand for CPU performance. It
is more elaborate than the discrete channel
gateway and consists of a shared Message
RAM, several CAN Cores and an internal
Control Unit (CAN Control). In some imple-
mentations, a Link Control is added to pro-
vide a basic gateway functionality without
causing any CPU load (Figure 2).

The system design is comparable to a single
channel CAN module with two or more CAN
protocol controllers. A CAN protocol control-
ler performs the serial communication in a
CAN bus system according to the CAN pro-
tocol specification. The CAN Control unit
manages the data flow between the CAN
protocol controllers, the Message RAM and
the CPU Interface, respectively the CPU
itself. It also controls the access of the differ-
ent instances to the Message RAM and pre-
vents data corruption. The Message RAM is
implemented as shared memory, the mes-
sages for all CAN channels are combined in
the same RAM block to reduce the need for
internal data transfer and therefore to reduce
the CPU load. The optional Link Control unit
is configured with the fundamental routing
rules. These rules are checked when a new
message is received. If a rule for a message
is defined, it will be performed by the CAN
Control unit without any need for CPU action.
Different functions may be provided, depend-
ent on the complexity of the Link Control and
CAN Control units. This can be a simple
copy of the complete message, a transfer of
the message data with a translated identifier,
up to message integration, where data of
several messages is combined into a new
one.

This concept, especially when it includes a
Link Control unit, reduces the CPU load sig-
nificantly. Its disadvantage is that it is compli-
cated to change the number of CAN
channels. This would require major changes
in the Link Control unit and in the CAN Con-
trol unit, especially in the arbitration of con-
current accesses to the shared Message
RAM. Up to now, there is no complex chan-
nel gateway available which supports more
than 5 CAN channels.

Modular Gateway

The modular gateway is based on a proven
single channel CAN module (Figure 3) which

is expanded with a gateway interface (Figure
4). Several instances of this adapted single
channel CAN module may be combined and
be turned into a gateway controlled by an
application specific Gateway Unit (Figure 5).

Figure 3: CAN Module w/o Gateway Interface

The single channel CAN module (in this
case, Bosch’s C_CAN IP, Figure 3) com-
prises the components CAN Core, Message
Handler, Message RAM and CPU IFC Regis-
ters. The CAN Core performs the serial com-
munication on the CAN bus. Individual
messages can be (pre-)configured in the
Message RAM and are managed by the
Message Handler. This includes the transfer
of messages between the CAN Core and
Message RAM, acceptance filtering and the
handling of transmission requests and inter-
rupts. Two sets of CPU Interface Registers
are used for the data transfer between the
CPU’s peripheral bus and the Message
RAM. They consist of the complete data,
header and control information, which are
moved as one single word on the internal
data bus.

Figure 4: CAN Module with Gateway Interface

DataIN

Clock

Reset

Address

Control

Wait

DataOUT

Interrupt

Message Handler

Message RAM

CAN_TX

CAN_RX
CAN Core

CPU IFC Register 1

M
o

d
u

le
 In

te
rf

ac
e

(single ported)

CAN-Message

CPU IFC Register 2

DataIN

Clock

Reset

Address

Control

Wait

DataOUT

Interrupt

Message Handler

Message RAM

CAN_TX

CAN_RX
CAN Core

CPU IFC Register 1

M
o

d
u

le
 In

te
rf

ac
e

(single ported)

CAN-Message

CPU IFC Register 2

In-Mux

Out-Mux
WR_Sel

RD_Sel

Cascade-Input

Cascade-Output

CAN-Message

Com. Mask
Com. Rqst

GWMode



iCC 2005 CAN in Automation

06-4

The existing single channel CAN module is
expanded by several functional blocks to
adapt it into a gateway cell. These functional
blocks are an input multiplexer In-Mux and
an output-multiplexer Out-Mux together with
the necessary control signals to direct the
data flow (Figure 4).

The two multiplexers give access to the inter-
nal data bus, making it possible to load the
complete CPU IFC Register in parallel from
a wide input port (Cascade-Input) and to
export the contents of the CPU IFC Register
over an equally wide output port (Cascade-
Output). The Cascade-Input may also be
routed directly to the Cascade-Output.

These two wide ports allow the transfer of a
complete CAN message and necessary con-
trol information in one step directly from one
CAN cell to other CAN cells, avoiding the
bottleneck of the CPU’s peripheral bus.

Figure 5: Structure of modular gateway module

When several instances of this adapted sin-
gle channel CAN module are cascaded into
a gateway module, the wide input and output
ports are connected to the cascade ring bus.
This allows the transfer of a complete mes-
sage and control signals to all connected
cells in one clock cycle. The data flow
between the CAN cells is controlled by an
application specific Gateway Unit that pro-
vides the control signals for the multiplexers
and the information to load/store a message
from/to the Message RAMs.

2 Comparison of Gateway Concepts

Semiconductor manufacturers and system
designers will use different parameters when
they compare the advantages of gateway
modules. For semiconductor manufacturers,
these parameters may be the module’s gate
count, its adaptability to different numbers of
CAN channels, as well as the possibility of

interconnection with several other protocol
interfaces (e.g. FlexRay, LIN, MOST, etc.).
For the system designers, these parameters
may be the flexibility in programming the
gateway functionality, access time for read/
transfer of messages, or the required CPU
performance. In general, a compromise has
to be found between these parameters,
especially the system structure/module size
and the needed CPU performance.

Discrete channel gateways are solutions
optimized for modularity and module size.
Several CAN cells can be connected to the
CPU bus, only the address space has to be
adapted. No semaphores or additional flags
are necessary to control concurrent requests
to a message buffer by several instances,
because only the CPU can access the cells.
This allows the interconnection of an
unspecified number of CAN channels.

The simple system structure without any
additional interconnecting logic reduces the
module size to a minimum. The lack of hard-
ware support for gateway functions however
increases the need for CPU performance. All
data transfers between two or more cells,
data manipulations, and insertions need to
be executed by the CPU. Especially the
sequential read and write cycles for a mes-
sage transfer between cells cause high CPU
burdens. In summary, a high number of CPU
cycles is unavoidable. This number of cycles
is increased by the interrupt handling or by
the polling of the connected cells (to check
for receptions), and by special functions like
the already named data manipulation or the
combination of several messages.

Even regarding the high CPU burden, this
gateway model provides the most flexibility in
programming, since the gateway functional-
ity is implemented in software. Such a gate-
way model meets the requirements of a wide
range of gateway applications.

In automotive and industrial control applica-
tions, where the numbers of interconnected
CAN cells and routed messages cause a
very high CPU load, gateway models are
needed that provide additional functions.
One such gateway model is the complex
channel gateway that implements a wide
range of functions in hardware, its central
component is the shared Message RAM.

C_CAN 1

...
C_CAN 2

C_CAN n

Gateway
Unit

Control signals

Cmd Rqst[1 n]
Cmd Msk[1 n]
Write Sel[1 n]
Read Sel[1 n]

GW Mode[1 n]
Write Enable[1 n]

CPU_IFC

CPU_IFC

CPU_IFC

CAN_TX

CAN_RX

CAN_TX

CAN_RX

CAN_TX

CAN_RX

CPU-Bus

Cascade-Ring



iCC 2005 CAN in Automation

06-5

The messages for all connected CAN chan-
nels are configured and stored in the same
RAM block. A message that is to be received
on one channel and to be transmitted on
another channel will occupy only one seg-
ment of the RAM block. This feature reduces
the CPU load, because it supersedes the
transfer operations of the message from
CAN cell(n) to the CPU and then from the
CPU to CAN cell(m). Automatic transmis-
sions of received messages on other net-
works can be started if a Link Control is
implemented. The CAN Control Unit detects
the reception of a message and checks the
routing rules in the Link Control. If a rule is
defined, it is executed by the CAN Control
Unit. Several functions can be implemented,
dependent on the complexity of the Link
Control and CAN Control Units. This can be
the simple copy of a message onto another
network up to the merger of several mes-
sages into a new one, combined with cycli-
cally updated transmissions.

The reduction of the CPU load is paid with
less flexibility in the system design. A compli-
cated control system is needed to transfer
the messages between the CPU, the CAN
cells, and the RAM, arbitrating between pos-
sibly concurrent requests by several cells to
the shared message RAM, requiring flags
and semaphores to assure data consistency.
A priorisation of all modules is required to
define which unit gets access to the RAM.
When a specific application of the gateway
needs new transfer functions or a different
number of CAN channels, this will require a
redesign of the whole gateway structure
(especially link control and CAN control).

The modular gateway is a merger of discrete
channel and complex gateway, combining
the advantages of both concepts. The opti-
mized structure allows a fast data transfer
between several cells without causing a high
CPU load [4]. If an internal state machine is
provided, the CPU load can be reduced to a
minimum. The transfer of messages from
one Message RAM over the cascade ring to
one other Message RAM takes more time
then in a complex channel gateway with Link
Control unit where no data transfer between
two CAN cells is necessary. However, the
transfer over the cascade ring takes less
then two CAN bit times and the cascade ring

has another advantage: It allows the transfer
of a message to one, several or all con-
nected cells simultaneously with nearly the
same effort.

The modular structure allows also a flexible
programming of the gateway function. Even
when the gateway function is controlled by a
finite state machine, the CPU keeps full
access to all functions of each CAN cell. For
example, it can write or read messages and
can start their transfer. Concurrent requests
of the CPU and of the FSM to the same cell
are solved in a deterministic way, sema-
phores and flags are not necessary. This
maximises the flexibility of the module. If
additional functions beyond a simple mes-
sage transfer/copy are required (e.g. the
merging of messages), special modules that
implement this features can be inserted into
the cascade ring.

Different applications need quite different
solutions. A modular structure allows to
design a new gateway by combining compo-
nents of a library, speeding up the design
time significantly. The size of such a module
is marginally larger than that of a discrete
channel gateway structure, it is increased by
the Gateway Unit and the optional message
manipulation functions.

The modular gateway structure is not
restricted to the CAN protocol, it is possible
to add several other protocol interfaces to the
cascade ring. These can be different bus
systems like TTCAN, FlexRay or LIN. When
implementing the time-triggered variant of
CAN, the gateway structure (incl. gateway
control unit) can be the same. Only the con-
cerned CAN cells have to be replaced by the
time-triggered ones. A different interface
structure then the cascade ring might be
used for the implementation of bus systems
transferring multimedia data (e.g. MOST,
IEEE 1394, Bluetooth) because of different
requirements regarding higher data rates on
the one hand and less emphasis on trans-
mission reliability, security, and time sched-
ules on the other hand.

An exemplary implementation of the modular
gateway structure was tested to demonstrate
the functionality of the cascaded ring struc-
ture. It consists of three CAN nodes,
enhanced by a data integration unit (mes-



iCC 2005 CAN in Automation

06-6

sage combination, message comparison),
controlled by a set of special function regis-
ters. The control software runs on a Motorola
HC08 CPU. The gateway was synthesized
into an FPGA. In total, the module needs an
additional gate count of nearly 10% com-
pared to the same number of discrete chan-
nel CAN modules. The functionality of the
test structure could be demonstrated in a
small application [4].

A short summary of important parameters
for the gateway models is shown in the fol-
lowing table (Table 1).

It was possible to show that discrete channel
gateways are no longer applicable in com-

plex automotive and industrial control appli-
cations. Real-time information exchange and
real-time ECU control structures can no
longer be guaranteed.

Available solutions that require less CPU
performance for data transfers are complex
channel gateways. With the module-internal
data handling, the requirement for CPU per-
formance can be reduced dramatically. How-
ever, the system structure is inflexible
regarding the number of CAN channels as
well as regarding the possibility to implement
additional functions.

The new modular gateway structure, which is
presented in this paper, solves the problem
of CPU performance, gives flexibility in sys-
tem design, and allows real-time operation.

3 Advanced CAN Gateway Architecture

The differentiation of the application areas,
combined with increased pricing pressure,
led to the implementation of specialised bus
systems, e.g. LIN, TTCAN, and FlexRay.

A gateway connecting these bus systems to
the CAN channels has to fulfil the same
requirements of limited CPU load and flexible
system structure as well as some additional
requirements, e.g. when connecting time-
triggered networks, networks with different
message length, or with different data rates.

Figure 6: Predefined data transfer between time-triggered networks

A message transfer between two unsynchro-
nised time-triggered networks is possible,
but time-triggered systems need to work on
a predefined schedule, otherwise it would
not be assured that the processed data is up
to date. In the worst case, caused by phase
shifts and differing time bases on the unsyn-
chronised networks, a time delay of an entire
cycle time could occur.

Therefore, all participants have to be syn-
chronised in order to achieve a predefined
data transfer (Figure 6).

The synchronisation between TTCAN net-
works, where the global time is provided by a
single time master, is quite easy. It can be
implemented in a simple hardware state
machine, when the gateway cells connected
to the (time-) slave networks are time mas-

Com-
plex

Channel

Discrete
Channel

Modular
Gateway

Design
Flexibility

low high high

Module Size
(Chip area)

high low middle

Expandability difficult easy easy
Hardware
Functionality

high low high

Required CPU
Performance

low high low

Time for internal
Mess. Transfer

low high low

Table 1 : Overview of important parameters for
gateway design

09A 355 050 12D

258 050 12D 09A…

09A12D…

09A

258

Basic Cycle 1 Basic Cycle 2 Basic Cycle 1

Matrix Cycle Matrix Cycle

Synchronization
Reference Point

Synchronization
Reference Point

Ref

RefRef

RefRef

Ref

Time-Triggered Network A

Time-Triggered Network B



iCC 2005 CAN in Automation

06-7

ters of that networks. The gateway cell con-
nected to the (time-) master network may be
time slave, potential time master or actual
time master in that network. It is not neces-
sary that all TTCAN networks operate with
the same basic cycle length; they may use
different cycle length and may operate on dif-
ferent CAN bit times.

A simple hardware state machine is not suffi-
cient to synchronize FlexRay networks,
because FlexRay is a multi-master bus sys-
tem where the global time is calculated on
signals coming from up to 15 nodes, the syn-
chronisation will be done by software. The
synchronisation of TTCAN networks with a
FlexRay network follows the same principle
as the synchronisation of two TTCAN net-
works. In this case the FlexRay network
would be the master network and all inter-
connected TTCAN networks would be con-
sidered as (time-) slave networks.

CAN applications uses data rates up to
1000 kBit/s. Specialised routing algorithms
are necessary when connecting CAN with a
bus system that uses higher data rates (e.g.
FlexRay 2x10 MBit/s), to prevent an overload
of the „slower” network. A possible solution is
the usage of message filtering, which is pro-
vided by the most modules. This means that
only predefined messages will be routed in
the gateway. However, some messages need
to be transferred only fractionally to another
network. In this case, it is applicable to inte-
grate several messages.

Multimedia components have become stand-
ard in the upper car class (e.g. navigation
and entertainment systems). The data com-
munication between multimedia compo-
nents and automotive bus systems
increased significantly in the last years (e.g.
adapting the sound volume to the driving
speed). The communication between the two
domains with their different requirements
needs a dedicated interface. The communi-
cation between both network domains must
not interfere with the communication reliabil-
ity of the automotive networks, while multi-
media applications are less critical. Another
aspect are the different timing requirements.
Automotive networks have to work at a pre-
defined schedule; most multimedia systems
cannot guarantee timing requirements.
Security is also an important factor to be

considered when interconnecting automotive
and multimedia bus systems. When such a
gateway is implemented in hardware, struc-
tures have to be implemented that prevent
the unintended data transfer between the
domains. Possible concepts are hardware
firewalls and data encryption.

4 Summary and Conclusion

Currently, the gateways provided by semi-
conductor manufacturers are discrete chan-
nel gateways or complex channel gateways.
Complex channel gateways have an inflexi-
ble application specific system structure
whereas discrete channel gateways need
control software that causes a CPU load that
depends on the combined bus traffic of all
connected CAN networks.

This paper has shown and compared the
structure as well as the advantages and dis-
advantages of both implementations. Also it
was shown that it is possible to adapt proto-
col interface cells to use it in a modular gate-
way. This modular gateway combines the
advantages of discrete and complex gateway
implementations. It is flexible in system
structure and reduces the load of the host
CPU or the Gateway Control Unit signifi-
cantly. First implementations and evaluation
results of an exemplary gateway were dem-
onstrated.

Future challenges are the enhancement of
the CAN gateway with TTCAN modules for
networks using a time-triggered architecture
and the integration of a finite state machine
to allow CPU-independent operation. A con-
cept for this control unit is in development.

References
1. Bosch: C_CAN User’s Manual, Revision 1.2; Robert

Bosch GmbH; http://www.can.bosch.com/docu/…
Users_Manual_C_CAN.pdf; 08.01.2005

2. Bosch: C_CAN Module Integration Guide, Revision
1.2; Robert Bosch GmbH; 21.01.2002

3. Bosch: TTCAN User’s Manual, Revision 1.6; Robert
Bosch GmbH; http://www.can.bosch.com/docu/…
Users_Manual_TTCAN.pdf; 08.01.2005

4. J. Taube, F. Hartwich, H. Beikirch: C_CAN Gateway
Module - A New Approach for CAN Gateways -;
embedded world 2005 Conference, Nuremberg
(Germany)

5. V. Nieten: Gateway Development Support for Multi-
Channel CAN with Event-Processor; 7th interna-
tional CAN Conference, iCC 2000, Amsterdam
(Netherlands)



iCC 2005 CAN in Automation

06-8

6. U. Kelling: The MultiCAN module - Two CAN were
not enough; CAN Newsletter June 2004; p16-p18

7. Freescale Semiconductor, Inc.: XGATE Block Guide;
http://www.freescale.com/files/microcontrollers/…
doc/ref_manual/S12XGATEV2.pdf; 08.01.2005

8. NEC Corporation: Preliminary User’s Manual
V850E/CA1TM ATOMIC; http://www.ee.nec.de/…
_pdf/U14913EE1V0UM00.PDF; 08.01.2005

Contact
___________________________________
Jan Taube
Robert Bosch GmbH, AE/EIS3
P.O.Box 13 42
72703 Reutlingen
Germany
Phone: +49 7121 35-4570
Fax: +49 7121 35-1746
E-mail: Jan.Taube@de.bosch.com
___________________________________
Florian Hartwich
Robert Bosch GmbH, AE/EIS3
P.O.Box 13 42
72703 Reutlingen
Germany
Phone: +49 7121 35-2594
Fax: +49 7121 35-1746
E-mail: Florian.Hartwich@de.bosch.com
___________________________________
Prof. Helmut Beikirch
University of Rostock
Faculty of Computer Science and Electr. Eng.
Albert-Einstein-Str. 2
18051 Rostock
Germany
Phone: +49 381 498-3514
Fax: +49 381 498-3608
E-mail: Helmut.Beikirch@etechnik.uni-rostock.de
___________________________________

Additional Sources
http://www.can.bosch.com/

Definitions, Acronyms, Abbreviations
CAN Controller Area Network
CPU Central Processing Unit
GW Gateway
FSM Finite State Machine
SFR Special Function Register
ECU Electronic Control Unit
ASIC Application Specific Integrated Circuit
ASµC Application Specific Microcontroller
IP Intellectual Property
CISC Complex Instruction Set Computer
RISC Reduced Instruction Set Computer


