iCC 2005 CAN in Automation

Routing of messages between DeviceNet networks and into
other CIP networks

Viktor Schiffer, Rockwell Automation Germany

The routing of messages across CIP™" networks (CIP = Common Industrial Protocol)
is one of the most interesting features of CIP since it allows seamless transition of
messages (connected and unconnected) between a DeviceNet™? network and other
networks of the CIP family, a feature that is not found in any other industrial
communication networks.
This contribution explains the following details of the mechanics of the routing
process for both connected and unconnected messages:

* Explanation of the general principle of the routing process

* The port object and port segments

* Details of unconnected message routing

* Details of connected message routing

* Execution of the routing

* Object addressing and object visibility within routers as seen from multiple
networks
Route browsing through multiple networks
Details of the routing within DeviceNet
Route representation with Electronic Data Sheets (EDS)
Bridging into non-CIP networks (last hop)
Real-world example: Full details of a trace of explicit messaging

The advantage of the described method is the fact that there is only one routing
method within all CIP networks (DeviceNet, ControlNet™®, EtherNet/IP™*) and
therefore, only minimal translation of messages is required.

Introduction: discussed. Finally, messaging into non-

CIP networks (last hop only) is explained.
CIP has defined mechanisms that allow

the transmission of messages across
multiple networks, provided the linking
devices between the various networks are
equipped with a suitable set of capabilities
(objects and support of services). This
unique feature makes a combination of
CIP networks appear as if they were one
big network. This paper describes the
general principle behind these
mechanisms within CIP, how connected
and unconnected messaging is set up
across multiple networks and what
requirements need to be fulfilled within the
linking devices. Examples of connected
and unconnected messaging are shown
and the benefits of CIP routing are

General principle:

When messages are transported from one
network to another (see Figure 1) linking
devices are required between these
networks that serve a dual purpose: They
carry out the transport between the
networks and they may reformat the
messages to adapt them to a different
data link layer if required. When the linking
device connects parts of a network
(subnets) that share the same node
address space, e.g. DeviceNet to
DeviceNet, it is called a bridge. All it has to
do is to store the message and forward it
on the other side using the bus access

"' CIP™ is a trademark of ODVA

? DeviceNet™ is a trademark of ODVA

? ControlNet™ is a trademark of ControlNet International

* EtherNet/IP™ is a trademark of ControlNet International under license by ODVA

07-15



iCC 2005

CAN in Automatio

mechanism of the other network. The
message as such does not need any
change at all. However, when the
networks are dissimilar or when they do
not share the same node address range,
the linking device may also have to
reformat it so that it fits into the transport
and network layers of the other network.
The linking device is then called a router.

Bridges are not discussed within the scope
of this paper. These devices are “invisible”
to all CIP messages and therefore do not
and cannot modify any of them. From now
on, this paper will talk about routers only.

«— Network
C

Router
#N+1

Router
#N

Router
#2

Router
#1

[ A A B R

Network Network Network  Network Network Network
A B D J K L

Figure 1: Routing between Networks

Routers may connect multiple networks as
shown in Figure 1. Router #2 has three
“ports” that link networks B, C and D.
Appropriate inclusion of the correct port
information into the message that
establishes the message transfer is
therefore required.

CIP distinguishes between two messaging
principles: Connected and unconnected.
When routing connected messages, a
“highway” is built from the originating node
through all routers to the destination node.
This “highway” is then used for all
messages across this connection for as
long as it exists. Due to the permanent
and fixed route, messages across this
connection can be routed without any
overhead and without any path information
within the actual message. However, such
connections tie up resources within the
routers. On the other hand, when routing
unconnected messages, only a temporary
‘road” is built from the originator to the
target. This “road” is erected while the
message travels from the originator to the
target and it is “dismantled” when the
response travels back on the return path.

Since this “road” only exists until the
message has completed, no permanent
resources are tied up within the routers.
However, the “road” has to be built and
taken down with every message sent and
this is more time consuming and it also
means that routing information must be
provided with every message.

Port Objects and Port Segments:

A central detail of all routing within CIP is
described through the Port Object. Most
CIP devices do not have a need for a Port
Object, all it would do is describe the one
and only port it has and this would result in
largely redundant information. However,
as soon as other CIP or non-CIP ports are
added to the device, the Port Object
provides a standardized way of describing
the port information:

* The class attributes specify how many
ports there are and they provide a list of
their principle characteristics.

* Every port of the device is represented
by an instance of the Port Object and
the instance attributes give a full
description of the properties of the port
associated with the instance. The most
important details for the routing process
are the port type (DeviceNet,
ControlNet, EtherNet/IP or other) and
the port number.

Navigation through the ports of a device is
done with the help of Port Segments. The
segment encoding method described in
Appendix C of the CIP Specification [1] is
a comprehensive addressing method that
allows many different types of addresses
one of them being the Port Segment
described here. A Port Segment is
recognized by the three most significant
bits of the first segment byte being set to
“0”. What a Port Segment essentially does
is to describe a “door” (the port) through
which to “leave” a device and then where
to go next. Therefore all port segments
contain a port identifier and a link address,
see Figure 2.

07-16



iCC 2005

CAN in Automation

Port Segment

Link address
(with padding)

Optional link
address size byte

Optional Extended

Port Identifier
(2 bytes)

Extended Link

Address Size

| | | | |\‘ Use Extended Port identifier
v if Port Identifier = OxF

Port Identifier

Byte #1

v

0 | 0 | 0
H_J
= Port Segment

Figure 2: Port Segment Structure

In most cases on DeviceNet and
ControlNet, the complete Port Segment
will comprise only two bytes with the first
byte indicating the port number and the
second byte indicating the link address on
the network, e.g. [02] [06] means: Go to
port #2 and on the network associated
with that port go to the device with the
node number “6”. The Extended Port
Identifier is only used when more than 14
ports are available on a device.
EtherNet/IP addresses need an extended
link address description and this is done
by setting the Extended Link Address Size
bit, specifying the number of bytes for the
link address and specifying the link
address through its ASCII representation.

Going to the EtherNet/IP port #3 and then

to the device with the IP address 10.71.1.1
would therefore expressed as

[13].cciienns Port segment, extended
link address size, port #3
[09]...ccneneii. 9 bytes of link address

[31] [30] [2E]
[37] [31] [2E]
[31] [2E] [31]... IP address 10.71.1.1

pad byte

If multiple hops are to be described by port
segments, the individual segments are
simply concatenated. Therefore,

“[13] [09] [31] [30] [2E] [37] [31] [2E] [31]
[2E] [31] [00] [02] [06] [05] [20]”

means:

“Go to port #3, then to node number (IP
address) 10.71.1.1; within that device, go
to port #2, then to node number 6, within

that device, go to port #5, and finally go to
node number 32.

Messaging details, connected:

Connections across multiple routers are
established in pretty much the same way
as it is common between two devices on
EtherNet/IP and ControlNet; a
Forward_Open request (Service Code
0x54) is sent from the originator node to
the target node. The only difference is that
the Connection_Path information now
contains routing information through one
or several routers. For full information on
the Forward_Open service, see chapter 3-
5.5.2 of the CIP Specification [1]. Only the
last field of the Forward_Open request has
to be extended, all others stay as before.
However, it may be necessary to adjust
the timing information defined in the first
two bytes of the message to
accommodate the additional delay of
passing through multiple routers and
networks.

Figure 3 shows typical data found within
the Connection_Path field of a direct
Forward_Open message in ControlNet or
EtherNet/IP. There is nothing but the
connection data for the target node, i.e.
segments to describe the location of the
configuration assembly and connection
points for the 1/O data.

20 04 24 03 2c 01 2c 02
N AN Y J/

I Connection points 01 and 02 within class 04
Class 04 (Assembly Object)

Instance 03 (Config Assembly)

Figure 3: Typical Path Information for a
Direct Connection

When a connection is to be established
into another network, routing information
must be included within the
Connection_Path. Therefore, Figure 4
shows the same Connection_Path, but
with the inclusion of a Port Segment as
described in Figure 2 above. This example

07-17



iCC 2005

CAN in Automatio

shows a Port Segment for a link with
single byte addresses, e.g. DeviceNet or
ControlNet.

| Originator |—P| Router |—P|

Port Segment
Port Number = 2, Link Address = 6

Target

02 06 20 04 24 03 2c 01 2c 02
\ AN J

I Connection points 01 and 02 within class 04
Class 04 (Assembly Object)

Instance 03 (Config Assembly)

Figure 4: Typical Path Information for a
Connection across a Router

When a connection is to be opened across
multiple hops, a concatenation of multiple
Port Segments must be used, the first Port
Segment indicating the first hop. When a
Forward_Open request then propagates
along the projected path, each router
strips off the “consumed” Port Segment
until the target network is reached. The
number of hops is theoretically unlimited,
but in reality it is limited by the amount of
data that can be carried in a single
Forward_Open request.

A connection established with this method
can be used for either Explicit Messaging
or I/0 Messaging in the same way as it is
done within a single network. All
connections created with the
Forward_Open request exist until they are
taken down again with a Forward_Close
request (Service Code O0x4E) or are
deleted due to other mechanisms, e.g.
timeouts. The Vendor ID, Connection
Serial Number and Originator Serial
Number must match the information used
in the Forward_Open request.

Messaging details, unconnected:

Unconnected messaging (for Explicit
Messages only) across routers makes use
of a somewhat different concept: The
transport mechanism is separated from
the execution of the actual Explicit
Message. This is similar to sending a
request in a letter through registered mail.
The mail service sends the object
(unopened!) across the system, from one

postal office to the next until the
destination town has been reached where
the letter is delivered to the addressee.
The addressee (equivalent to the target
network) opens the letter and does
whatever the content tells him to do. The
mailman records the (successful or
unsuccessful) delivery and returns a
delivery (or non-delivery) receipt plus any
other response to the sender.

The service used for this mechanism
within CIP is the Unconnected Send
request (Service Code 0x52). An
Unconnected _Send request therefore acts
like an envelope for the Explicit Message
to be delivered and, apart from size
indicators and possible padding, contains
nothing but timing information and
Route_Path information on the “outside” of
the envelope. Timing information on the
“envelope” is required since every router
needs some time to process the request
so that the timing for the next hop needs to
be adjusted. This process is identical to
the timing information processing that is
done with Forward_Open messages. The
complete structure of an
Unconnected_Send request can be found
in chapter 3-5.5.4 of the CIP Specification

[1].

In contrast to the Forward Open request,
the Route Path field of an
Unconnected_Send request only contains
one or several Port Segments and no
further addressing segments. As with
Forward Open requests, the number of
hops is theoretically unlimited, but in
reality it is the overall message length
including path segments and request data
that will allow a limited number of hops
only.

Execution of the routing, connected:

Every Forward_Open request is directed
towards an instance (typically #1) of the
Connection Manager Object. This object —
as its name indicates — is responsible for
the connection management. If the object
does not find a Port Segment, it executes
the Forward Open service in the local
device as requested. If it finds one or
several port segments, however, then the

07-18



iCC 2005

CAN in Automation

object deletes the first Port Segment and
forwards the Forward_Open message to
the port/device combination indicated in
this segment. Everything else in the
Forward Open request remains
unchanged except for the Originator-to-
Target Connection ID which may have to
be adapted to the characteristics of the
network connected to the forwarding port.
If an error occurs along the path of the
Forward_Open request, an unsuccessful
Forward_Open response is returned to the
originator. When the complete connection
establishment process is successful, a
successful Forward Open response is
returned and the connection is then ready
to be used. During this process,
Originator-to-Target and Target-to-
Originator Connection IDs have been
created and all routers along the routing
path remember these Connection IDs. All
the routers then have to do is listening to
messages with the established Connection
IDs, forward them to the appropriate port
and produce them on the other network
with the Connection ID assigned for that
network. Thus all messages can be
transmitted in a most economical fashion.

Execution of the routing, unconnected:

Every Unconnected_Send request is
directed towards an instance (typically #1)
of the Connection Manager Object. This
object — as its name indicates — is
responsible for the connection
management. If the receiving Connection
Manager Object finds only one port
segment in the request, it transmits the
Unconnected_Send request to the port
specified in the port segment and there the
embedded Explicit Message is executed
with the node indicated in the Port
Segment and a response is returned. If it
encounters a network that does not
support unconnected messaging, e.g. a
DeviceNet network, the router creates an
Explicit Messaging Connection before
executing the embedded Explicit
Message. However, if the receiving
Connection Manager Object finds two or
more Port Segments, then the object
deletes the first Port Segment, forwards
the Unconnected_Send message to the
port/device combination indicated in this
segment and remembers the path details

for the return message. It also processes
and updates the timing parameters. If an
error occurs along the path of the
Unconnected Send request, an
unsuccessful Unconnected_Send
response is returned to the originator.
Once the forwarding process is complete
and a return message has been
generated, the router can release all
resources associated with the routed
message. It is important to note in this
context that the transport mechanism may
have been successful in forwarding the
message and returning the response, but
the response could still contain an
indication that the desired service could
not be performed successfully in the target
device.

Object addressing within routers:

Routers have two or more network
interfaces (ports) represented by individual
instances of the Port Object (the port
numbers do not necessarily align with the
instance numbers). All objects that are
associated with a network port exist at
least once per port. This is so because,
from the network point of view, every port
is independent and does not have any
immediate relationship to the other port(s).

Port 3 Addr essable Objects

Device Addressable Objects

Figure 5: Object Address Space within a
CIP Router (DeviceNet to DeviceNet)

As shown in Figure 5, all network related
objects are directly visible only on the
associated port while the other objects are
visible from any port. Any network related
objects associated with the other port(s)
must therefore be addressed using the
Unconnected_Send mechanism with an

07-19



iCC 2005

CAN in Automatio

appropriate path in place. In order to
access instance 1 of the DeviceNet Object
in object space of port 3, the
Unconnected Send service of the
Connection Manager Object for port 2
needs to be used. The Route Path
parameter within the Unconnected_Send
service would contain 03 07 indicating that
the request should be routed to port #3
within the device, node #7 on that network.
The router must detect that it is node #7
on the network with which port #3 is
connected, process the request
accordingly, and send a response.

Route browsing:

All routers contain enough information
within their Port Objects to allow a tool to
find its way through the router into another
network. This is so because the class
attribute 9 contains a data array of the
most important properties of all ports
instantiated in the device. Every one of
these ports is described in full detail within
an instance of the Port Object associated
with the port it describes. Using this
information, a browser tool can then
interrogate the devices on the other
network(s) for further information, e.g. to
find further CIP routers. Once the tool has
identified a particular device on a network
that can be reached through the router, it
can then use the path information
determined through this browsing process
and insert it into the Unconnected_Send
messages that are required to work with
the devices of the target network(s).

FIOTTE— _iaix]
¥ Autobrowse Eftech 2 ol
(=l TCP-1, Ethernet = )
=] 192.168.0.100, 1756-ENET/A, 1756-ENBT = g % Ej
£ Backplane, 1756-A10/4 o o
00, 1756-L63 LOGIRS563, 1756-L¢ 1734-A... 1734-1B22... 1734-0B2E ... 1734-IBZ 2...
01, 1756-DNB{#, 1756-DNE{A De
02, 1756-DNBIA, 1756-DNEIA Des g
04, 1756-08B32/4, 1756-0B32{A
05, 1756-CNBRJB, 1756-CNBRB 04
= 07, 1756-CHERJB, 1756-CNBRE 1734-082€ . ..
= &5 &, Controlet
i 0z, PLCSR0C

-] 29 17, 1768-CNZDN Linking D
-5 PartZ, Devicelet

f oo, 1756-DRBjA
gl 02, 1768-CHZ0N L
Ll 1, 179Dt
L@ 12, 1792D-18BMTC
w13, 17920-8BvTEC
=4 18, 1734-ADN Pair
ER i
o 00, 17344
v 0L, 17344
Lol 0z, 173
ol 03, 17344
e B 04, 173440
f 18, 1756-CHBRjB, 1756~
08, 1756-CNBRYD, 1756-CHBR D

2]
| 09, 1756-EMBT]A -
»

Figure 6: Network Browsing with RSLinx

Figure 6 illustrates the browsing process
and how this is displayed through a
graphical user interface. The navigation is
similar to the Windows Explorer. In this
example, the browse tool (RSLinx,
Rockwell Automation) first has browsed an
EtherNet/IP network and found — among
other devices — a Rockwell Automation
1756-ENBT module at IP address
192.168.0.100. Within this device, there is
a second port (port #1, “Backplane”), the
backplane port of this device. Within the
backplane, RSLinx has found a set of
devices for possible further browsing,
including 1756-DNBs (for DeviceNet) and
1756-CNBRs (for ControlNet). The device
through which the tool entered the chassis
is also shown (slot #9), but without the “+”
sign indicating that there is nothing else to
browse. After clicking on the “+” sign of the
1756-CNBR in slot #7, port “A” opens up
and indicates the presence of a ControlNet
network. After browsing this network,
another routing device (node #17, 1788-
CN2DN) is found that supports a
DeviceNet network on the other side. After
browsing this DeviceNet network, the
possible target nodes (1734-xx) on this
network are identified. The path to these
1734-xx nodes now contains a port
segment for the backplane (to node #7),
another segment into the ControlNet
network (to node #17), then one into the
DeviceNet network (to node #18) and
finally one to the target device (to node
numbers 1 through 4).

Routers and device types:

Being a router does not imply being a
device with a particular device type
although most of them would likely use the
Communications Adapter device profile, in
other words, saying you are a CIP router
really means you support the CIP routing
function. Router devices only have one
identity, independent of the port they are
accessed through.

Adaptations for DeviceNet:

DeviceNet nodes typically do not contain
the Connection Manager Object, but since
CIP routing requires this object, all routers
on DeviceNet must have the Connection

07-20



iCC 2005

CAN in Automation

Manager Object. Due to the somewhat
modified Explicit Messaging structure on
DeviceNet (abbreviated object addressing)
some translation has to take place inside
the router. However, the most important
adaptation required is the prepending of a
Transaction ID field to allow distinction
between multiple outstanding Explicit
Messages; normal DeviceNet Explicit
Messages allow distinction between only
two outstanding Explicit Messages. This
additional Transaction ID field occupies
the first two bytes of the service specific
data of the Forward Open and
Unconnected_Send message. By the way,
both messages are sent across DeviceNet
Explicit Messaging Connections even
though “Unconnected_Send” seems to
indicate an unconnected message. Due to
the length of these two message types,
both messages are sent as fragmented
messages although the examples in this
paper and in the CIP Specification always
show them as one entity for clarity
reasons.

Another detail on DeviceNet is also worth
mentioning: Most DeviceNet devices do
not support peer-to-peer 1/0 Messaging
and DeviceNet in general does not support
Unconnected Explicit Messaging.
Therefore, to accommodate 1/0 Message
routing, a CIP-to-DeviceNet router will first
try to use peer-to-peer I/O Messaging, but
if that is not successful, 1/0 Messaging
through the Master/Slave Connection Set
will be tried. In a similar way, a router will
create an Explicit Messaging Connection
using the UCCM_Open service or the
Master/Slave Connection set or reuse an
existing connection for any
Unconnected Send requests to be
transmitted across DeviceNet.

A full description of all adaptations
necessary for DeviceNet can be found in
the DeviceNet Specification [2].

Routing representation in EDSs:

Figure 7 shows the [Port] section of a
typical router EDS. Routers that have
more ports need as many PortN entries
as there are ports in the device. This
example is taken from the Rockwell

Automation 1788-CN2DN device shown in
Figure 6 above. The port name (Port2)
and the port type (DeviceNet) are direct
equivalents to what can be found in
attributes #4 and #1 of the Port Object
instances. The “N” of the PortN entry
corresponds to the instance number of the
Port Object. In the case of the 1788-
CN2DN, the Port Object has the instances
#1 and #2.

[Port]
Portl = ControlNet Redundant,

"Portl",

20 FO 24 01",

3;

rt type
rt name

h to Port object, The CNet object
ernal Port Number

& e

Port2 = DeviceNet,
"Port2"

20 03 24 01",
2;

rt type
rt name

th to Port object, The DNet object
ternal Port Number

$ Po.
$ Po.
$ Pa
$ In
$ Po.
$ Po.
$ Pa
$ In

Figure 7: Typical [Port] Sectionin a
Router EDS

Non-CIP network on the last hop:

When the last hop goes into a non-CIP
network, routing of 1/O and Explicit
Messages is still possible, but whether
these functions can be supported or not is
largely dependant on the characteristics of
the target network. The following details
have to be considered:

* The linking device between the two
networks should be capable of
performing the routing of all messaging
requests coming from the CIP side.
These messages are forwarded to the
individual devices on the target
networks. Using this concept, the
request for a certain piece of data within
a target device will be answered by this
device, not by a proxy object within the
router that may contain old data or that
still needs to forward the data to the
target device.

* With a suitable router, devices on the
non-CIP target network will look and
behave pretty much like CIP devices,
but they may not support the minimum
CIP object model due to different data
structures in the non-CIP target devices.

* Whether such a router can also route
requests from the non-CIP network into
the CIP world will largely depend on
what services and capabilities exist in
the target network; they may not be as
universal and powerful as those within
CIP.

07-21



iCC 2005

CAN in Automatio

* While node addressing mechanisms
within CIP are flexible enough to even
accommodate addresses as complex as
an IP address, object addressing (or
whatever equivalent the target network
uses) may have to be translated in the
router. The popular method of using an
index (16 bit) + subindex (8 bit)
addressing (e.g. on CANopen and
Interbus-S) is not a problem, this can
easily be represented as a vendor
specific object that is addressed in a
target device and the router performs
the translation into the native target
network addressing scheme.

* CIP Service Codes can be reused as
long as the target network has services
that are a 100% equivalent of a CIP
service. Other services of the target
network have to be represented by
vendor-specific service codes that the
router translates into the native target
network services.

* To what extent both I/O and Explicit
Message routing can be accomplished,
depends on the message type structure
of the target network. In many cases, a
proper routing will only be possible for
configuration data and diagnostic
parameters through Explicit Messaging.

A typical example of how non-CIP
message routing can be accomplished is
the work that is currently being done in the
JSIG (Joint Special Interest Group)
“Distributed Motion” of the ODVA that is
working on defining an open CIP-to-
SERCOS routing functionality. Once their
work is finished, this can be used as a
“template” for other non-CIP networks.

Advantages of the CIP routing principles:

The advantage of the described method is
that no router needs to know anything
about the messages to be routed ahead of
time. Any configuration that is required
comes either with the Forward Open or
the Unconnected Send requests.
Therefore, no router must be configured
ahead of time and as a consequence, no
configuration is required at any time, not
even when a defective router must be
replaced. This is why it is called seamless
routing. The message originator only has
to know the system network topology to
specify the proper hops. From a user’'s
point of view, this is very simple to do
since he can determine the desired paths
through route browsing without the need to
manually enter the path.

07-22



iCC 2005

CAN in Automation

APPENDIX: Real world example: Explicit messaging from EtherNet/IP to a DeviceNet node

The following example shows the
messages that are exchanged between an
EtherNet/IP messaging client (RSNetworx
for DeviceNet) and a DeviceNet target
device reached through an EtherNet/IP-to-
EtherNet/IP router, an EtherNet/IP-to-
DeviceNet router and a DeviceNet-to-
DeviceNet router. The EtherNet/IP-to-
DeviceNet router is made up of two
devices connected via a backplane;
therefore, another Port Segment is
required. The following addresses are
used:

EtherNet/IP 10.71.130.
messaging client 117
EtherNet/IP-to-Backplane 192.168.0.
router, EtherNet/IP side 100
EtherNet/IP-to-Backplane 9

router, Backplane side:

Backplane-to-DeviceNet 1
router, Backplane side:

Backplane-to-DeviceNet 0
router, DeviceNet side:
DeviceNet-to-DeviceNet 5
router, primary side:
DeviceNet-to-DeviceNet 0
router, secondary side:
DeviceNet target device: 1

The example shows only the relevant
messages that are exchanged, any
messages required to create connections
are dropped for clarity. Processing of the
timeout information within the
Unconnected_Send message is not
discussed in this context.

The Unconnected_Send message of the
EtherNet/IP messaging client is sent as
SendRRData request (command code
0x006F) across a previously established
EtherNet/IP session. The details of this
EtherNet frame are explained in Figure A
1. Full details of the EtherNet/IP message
encoding can be found in the EtherNet/IP
Specification [3].

00 A0 24 CC 8C D1 00 08
74 04 3D D1 08 00 45 00
00 7A OE CD 40 00 80 06
D2 84 OA 47 82 75 OA 47
82 29 04 16 AF 12 D2 BS
00 F9 00 43 36 2F 50 18
FE BB 20 4F 00 00

6F 00 3A 00 16 00 00 00
00 00 00 00 7A 0A 00 00
28 4B 38 01 00 00 00 00
A0 B1 F2 00 0A 00 . . .

Ethernet, IP, TCP headers

I

Encapsulation header

Interface handle, timeout

02 00 . . « « ¢« o o . . item count (2)

00 00 00 00O . . . . . . Null item

B2 00 2A 00 . . . . . . Unconnected data item, length: 42

52 02 .+« o 4. .. Unconnected _Send service
Request Path size: 2 words

20 06 24 01 . . . . . . Request path: Connection Manager ,
Instance 1

06 924 08 00 . . . . . . Time tick, timeout ticks,

request size (8 bytes)
Get_Attribute_Single, 3 words path
ID Object, Serial Number

11 words path, reserved byte

0E 03
20 01 24 01 30 06 . . .
0B 00
10 OE 31 39 32 2E 31 36
38 2E 30 2E 31 30 30
padbyte"

Ist Port Segment, port 0, node 4
address 192.168.0.100

2nd Port Segment, port 1, node 1
3rd Port Segment, port 2, node 5
4th Port Segment, port 3, node 4

Figure A 1: Unconnected_Send Request
across EtherNet/IP

The message shown in Figure A 1 is what
is sent by the requesting application. It first
passes through the EtherNet/IP-to-
EtherNet/IP router (the next EtherNet/IP
node is on a different network) before it is
delivered to the EtherNet/IP-to-DeviceNet
router. This routing process only removes
the first Port Segment and updates the
timing information.

This message is then translated by the
EtherNet/IP-to-DeviceNet router as
follows:

* Since the EtherNet/IP-to-DeviceNet
router consists of two routers
(EtherNet/IP-to-backplane and
backplane-to-DeviceNet), it “consumes”
the next two Port Segments.

* The message is also translated into the
DeviceNet format.

The resulting message on DeviceNet is
shown in Figure A 2; the message header,
the fragmentation and fragmentation
acknowledgements are omitted for clarity.

07-23



iCC 2005

CAN in Automatio

Unconnected_ Send service

06 00 01 . . . . . . Path to Connection Manager,
instance 1 (format 16/8)
0100 . . . . . .. Transaction ID
06 90 08 00 Time tick (unchanged), timeout ticks (reduc ed

from 0x9A to 0x90), request size
Get_Attribute_Single, 3 words path
ID Object, Serial Number

1 word path , reserved byte
remaining Port Segment

OE
20
01
03

Figure A 2: Unconnected_Send Request
on DeviceNet

Finally, this message is translated once
again in the DeviceNet-to-DeviceNet
router. This router recognizes that the
message has now reached the target
network and so it executes the explicit
message “wrapped” into the
Unconnected_Send message and the
result is the well familiar
Get_Attribute_Single request/response
messages on DeviceNet as shown in
Figure A 3 (message headers left intact
here, messages using the Master/Slave
Connection Set).

00 OE 01 00 01 06 . . Get_Attribute_Single request from ID O bject,
instance 1, attribute 6 ( Serial Number),

16/8 format

Get_Attribute_Single success response

with Serial Number 0x1A0A52B7

00 8E B7 52 0A 1A . .

Figure A 3: Explicit Messaging
Request/Response on DeviceNet Target
Network

The response now travels back through
the DeviceNet-to-DeviceNet router and
takes the shape of an Unconnected_Send
response now as shown in Figure A 4.

Unconnected _Send response

DeviceNet Transaction ID

General Status (0 = success), reserved byte
Serial Number (0x1A0A52B7)

B7 52 0OA 1A . . . .

Figure A 4: Unconnected_Send Response
across DeviceNet

Back at the originating device, after
traveling back through the EtherNet/IP-to-
DeviceNet router and the EtherNet/IP-to-
EtherNet/IP router it finally takes the
shape of the message that is shown in
Figure A 5.

00 08 74 04 3D D1 00 A0

24 CC 8C D1 08 00 45 00

00 58 51 B8 40 00 80 06

8F BB 0A 47 82 29 0A 47 Ethernet, IP, TCP headers

82 75 AF 12 04 16 00 43

36 2F D2 B5 01 4B 50 18

1C A6 9C B6 00 00

6F 00 18 00 16 00 00 00

00 00 00 00 7A OA 00 00 } Encapsulation header

28 4B 38 01 00 00 00 00 J

A0 Bl F2 00 OA 00 .. Interface handle, timeout

02 00 . . . . . & & .. Item count (2)

00 00 00 00 . . . . . . Null item

B2 00 08 00 . . . . . . Unconnected data item, length: 8

8E . . . . ... ... Get_Attribute_Single response

00 00 00 . . . . . . . Reserved byte, general status
(0 = success), reserved byte

B7 52 0A 1A . . . . . . Serial Number (0x1A0A52B7)

Figure A 5: Unconnected_Send Response
across EtherNet/IP

In this example, the router has chosen to
return “8E” (Get_Attribute_Single
response) as service code. The desired
data (Serial Number 0x1A0A52B7) is then
displayed to the user of RSNetworx for
DeviceNet and the process has completed
successfully.

REFERENCES:

[11 CIP Common Specification, Edition
2.0, December 15, 2003, ODVA.

[2] DeviceNet Adaptation of CIP
Specification, Edition 1.0, December
15, 2003, ODVA.

[3] EtherNet/IP Adaptation of CIP
Specification, Edition 1.0, June 5,
2001, ODVA.

Viktor Schiffer
Rockwell Automation Germany
Dusselberger Str. 15

42781 Haan

Germany

Phone: +49-2104-960-193

Fax: +49-2104-960-197

Email: vschiffer@ra.rockwell.com
Website:

http://www.automation.rockwell.com

07-24



