
iCC 2003 CAN in Automation

03-7

Advanced FullCAN Architecture
New AFCAN Macro with Diagnosis Support

Wolfgang Wiewesiek, NEC Electronics (Europe) GmbH

Since 1996 NEC provides CAN interfaces. The DCAN is a single channel interface and
the FCAN offers up to 5 independent channels with a focus on supporting gateway
applications. These are well-established macros used in all areas of the automotive
field. The successor macro AFCAN (advanced FullCAN) is designated to replace all
existing CAN macros of NEC on all CPU platforms in order to provide a single
architecture for the customer. It will help reduce the cost for maintaining many
different S/W drivers. This has been recognised as a strong request from car
manufacturers. Along with this strategic concept, NEC introduces new technical
features while keeping the highly accepted features of the current FCAN. The frequent
tasks like receiving and transmitting messages are now supported by separate
“History Lists” that speed up these processes and provide to keep track on the
sequence of messages without any CPU burden. Further the AFCAN features an
“Automatic Block Transfer” mode with programmable delay in between those
transmitted messages. The AFCAN carries 32 buffers per channel (available since b/o
2003). First products with 48 buffers and 16 buffers per channel are scheduled for
e/o 2003. A derivative of the 48-buffer version features an integrated listen only
channel in order to support monitoring of other CAN channels for diagnostic
purposes.

Introduction

With the AFCAN (Advanced FCAN) NEC
offers the third generation of its CAN
macros. To understand the motivation of
NEC to create a new type of a CAN
macro, a short glance at the history of the
developments of CAN macros needs to be
taken.

In 1993 NEC started to develop CAN
macros. The first macro, the DCAN, was
mainly used in automotive applications at
that time. This single channel macro
provided 16 receive and two transmit
message buffer. From performance point
of view it could be regarded as a FullCAN
type of implementation already. At least
the reception path equipped with two
BasicCAN objects was able to fulfil the
requirements requested by dashboard
applications at that time. Nowadays the
DCAN is found on 8-bit and 32-bit cores
with low and medium communication
requirements. However the ongoing trend
to more message objects and the support
of more than one network made a new
CAN macro inevitable. Also the quite
rudimentary hardware functions of the
DCAN provided to the CAN driver software

were not sufficient anymore to meet the
demands for quick service and thus short
run-time of the driver routines.

Therefore, in 1999 NEC presented its first
multi-channel macro, the FCAN. It features
up to 64 message buffers, which can be
freely assigned to one of the up to five
CAN-channels. In comparison to the
DCAN, this macro truly provides FullCAN
performance for recept ion and
transmission path. As well the FCAN
offers several features that eases the
driver software like i.e. the bit set/clear
function for all control registers. It
facilitates easy bit manipulation when
using C without being forced to use bit
fields. The FCAN also offers search
functions for the host CPU. Thus the CPU
does not have to browse the entire
message buffer RAM for finding i.e. the
last received message.

Many features of the FCAN belong still to
the list of requirements for today’s
applications in the automotive field.
However some new aspects have recently
been recognised, which necessitate a new
step of development. First of all, there is a

iCC 2003 CAN in Automation

03-8

new standardisation process ongoing. The
‘Hardware Initiative Software’ (HIS) as
promoted by several players in the
automotive field, requires standardised
communication drivers throughout all
platforms. Thus an approach to offer
different CAN macros for each CPU core
does not meet anymore the scenario put in
place in the next years.

As well new demands to provide
enhanced diagnosis support in
communication systems comprising
several CAN-bus systems with different
bus speeds have been identified.

The AFCAN (‘Advanced FCAN’) macro
meets those new challenges.

AFCAN Architecture

The concept of the AFCAN architecture
follows the target to provide identical
behaviour of the communication link
independently of the host processor, or the
amount of message buffers.

The user can use the same C source code
of the driver on an 8-bit CPU and on a 32-
bit core because the interface of the CAN
macro to the host CPU, the NEC

Peripheral Bus (NPB), is common to all
devices of NEC.

The amount of message buffers for a
particular instance of an AFCAN macro is
merely a parameter that needs to be set
up during compile time.

The demand to have identical behaviour
even when the number of supported CAN-
channels vary, led to the conclusion that a
new CAN-interface can only be a single
channel macro. Any interdependency of
one CAN-bus to another one can be
eliminated that way. Thus the previous
concept of the FCAN, a multi-channel
design, was revised. The overall
architecture of the AFCAN shown below
can easily be expanded to the required
number of CAN-bus systems.

A single AFCAN instance can be scaled to
provide 16, 32, or 48 message buffers. For
low-end applications, typically just asking
for a slow 8-bit core, 16 message buffer
are regarded as sufficient. Still the AFCAN
provides the full performance. The bus
speed of 1 MBPS is even achieved as
long as the host system runs at 8 MHz.

Medium and high-end communication
requirements are fulfilled with the 32-buffer

CAN Protocol Layer
ISO 11898 compliant / tested according ISO 16845

CAN Protocol Layer
ISO 11898 compliant / tested according ISO 16845

Interface Management

Transmit Search Machine
Receive Message Acceptance Filtering Machine

Multi-buffer Receive Block Machine
Message Copy Machine

Automatic Block Transfer Machine

Interface Management

Transmit Search Machine
Receive Message Acceptance Filtering Machine

Multi -buffer Receive Block Machine
Message Copy Machine

Automatic Block Transfer Machine

Message Buffer Table
32 / 48 buffer

Message Buffer Table
32 / 48 buffer

Mask4Mask4

Mask3Mask3

Mask2Mask2

Mask1Mask1

CAN RXCAN TX

Internal Bus

iCC 2003 CAN in Automation

03-9

version as it is seen on 32-bit cores. In
those applications a second or any other
number of instances of the macro can be
added.

For gateway applications, the 32-buffer
version may not always satisfy the
demands. Thus NEC provides a 48-buffer
version, which needs 16 MHz operating
frequency to achieve correct operation at
maximum bus speed. For lower bus
speeds, i.e. 500 KBPS, the source clock
can be reduced to 8 MHz as for the other
AFCAN versions.

The features described below are common
to all AFCAN versions.

Features

Transmit History List

The sequence of transmitted message can
be tracked by the application without
remarkable efforts. The AFCAN offers a
‘Transmit History List’ (THL) for that
purpose. It is a record of seven, most
recently transmitted messages. The driver
software just needs to read a single
register were the pointer of the oldest
transmission is stored. This THL-register
provides a pointer to the respective
message buffer. With every read access to
the THL the AFCAN will update the pointer
to the next entry (if any). The advantage of
this method is that there is no need for
complicated evaluation of time stamps by
the host CPU to recover the exact order of
transmissions.

Receive History List

The analogue method is available for the
reception path. The ‘Receive History List’
(RHL) even comprises a record of the last
23 receptions. Intentionally the reception
path is equipped with more than three
times the capacity as the transmit path.
The number of received messages is and
will also be in future substantially higher
than transmitted messages. The benefit
for the application is that it does not have
to react that quickly on received messages

but still does not loose their sequence.
This can be of advantage when i.e.
parameter downloads are mixed with
control messages. The host processor will
always be able to find out at which time
the control message interleaved the
parameter data in order to apply i.e.
different processing algorithms to the
following data at the correct point in time.

Multi-Buffer Receive Block

A Multi-Buffer Receive Block (MBRB) is
built by a variable number of RX-message
buffers grouped by the same configuration
(identifier, mask). The AFCAN will store
messages into this block without
overwriting messages the CPU has not
read yet. Even if the same identifier was
received, the AFCAN stores the message
at the next higher buffer number. The Data
New (DN) flag of each message buffer
indicates the service status. Similar to a
FIFO, the interrupt generation can be
invoked when the MBRB is full. Also other
states, half-full or 7/8-full, can be
configured as the assignment for interrupt
generation can be done individually for
each message buffer.

The CPU clears the Data-New (DN) flag of
a buffer when it has been read. Then this
buffer becomes available again to receive
a new message. The AFCAN will always
store the next message in the buffer with
the lowest buffer number. Thus the
sequence of buffer numbers may not
always reflect the occurrence of the
messages on the bus anymore. This may
be confusing at first glance, but thanks to
the ‘Receive History List’-feature, the host
processor has no problem to follow the
correct sequence of the receptions. Even
when the CPU does not use interrupts on
MBRB and polls the contents in cyclic
intervals, the sequence of received
messages is safely retrieved with RHL
function.

The RHL-function is a valuable new
feature. The MBRB in conjunction with the
RHL-function even enhances the
performance of a similar function that the
FCAN provides. The host processor of an
AFCAN has to master almost no

iCC 2003 CAN in Automation

03-10

administrative task to use this feature – a
clear benefit for the software driver.

Automatic Block Transfer Mode

Typical application scenarios are i.e.
parameter downloads or transferring
programming data without instantaneously
occupying all bandwidth. The Automatic
Block Transfer (ABT) mode provides a
handy method to encounter these
scenarios without asking the host
processor to monitor the busload.

When the user invokes the ABT-mode, the
transmissions from the lower eight buffers
are automatically handled by the AFCAN.
A single request for transmission will sent
all message objects out of that group. The
TX-objects in the ABT-group are sent in
ascending order of the buffer number, i.e.
irrespectively of any identifier priority
among them. However these messages
will not necessarily be sent back to back
as a programmable delay becomes
effective before the next transmission is
launched.

This programmable delay timing between
TX-messages of the ABT-group allows
system design to limit the peak load of
these messages a priori. The delay time
can easily be calculated as the unit is
automatically adjusted to “bit time”. If for
example a program download shall use
only 50% busload, the user just needs to
know the average message length of the
TX-messages. Assuming 100 bit times for
the typical TX-message delivers also 100
for the value to be written into the delay
register. The delay time is started anytime
a transmission from the ABT-group
finishes. Of course this delay requirement
is only valid for the lower eight TX-objects
in the message buffer area. When the
application has assigned additional TX-
objects elsewhere, these TX-objects are
sent as soon as possible. Note that the
current message object from the ABT-
group will still have to arbitrate against
other TX-objects in the AFCAN also
flagged for transmission. This way other
TX-communication can be interleaved to
the ABT-mode even when the delay timing
is set to a minimum.

Options for Diagnosis Support

In multi-channel environments there is
often the necessity to monitor the
exchanged data of all CAN-bus systems.
For cost reasons or mechanical obstacles,
only a subset of all CAN-channels,
typically only one channel, is connectable
to a diagnosis plug from where an external
node can access the data. Thus a multi-
channel node (gateway) needs to perform
the transfer from a particular source CAN-
bus to the diagnosis bus. A small outlook
on the pros and cons of the potential or
existing solutions shall explain the
challenges in this field.

Some current realisations simply assign
this task to the host processor of the
gateway. The advantage of a very flexible
copy process is given here. Even
reformatting of the data received from the
monitored bus can be issued before it is
sent to the diagnosis CAN-bus. However,
there are quite a few disadvantages that
need to be taken into account. In first
place, the gateway suffers a real-time
infringement during the diagnosis mode
because the host processor has to handle
all messages. As a consequence, no
guaranteed latency time for the monitored
messages can be given anymore. An even
more severe limitation is linked to that
method as only messages normally
received on the monitored CAN-channel of
the gateway are transferred to the
diagnosis bus. Other messages remain
invisible to diagnostic system/node.

Other implementations supporting
diagnosis on multiple CAN-bus systems
use relays. The clear advantage to access
the monitored bus in real t ime
unfortunately is linked to quite high costs.
Each CAN-bus that shall be monitored
requires one relay including the control
circuitry. Additionally more wire harness
becomes necessary. Besides those
burdens, only a CAN-bus that has the
same bus speed than the diagnosis bus
can be monitored.

A third solution that NEC offered with the
FCAN is a dedicated ‘bridge’-processor.
This approach avoids already many of the
previously named disadvantages. It is

iCC 2003 CAN in Automation

03-11

flexible, it can handle different bus speed
on monitor versus diagnosis CAN-bus,
and it does not increase the load of the
host processor. However, this concept
does require a common message buffer
memory for all CAN-channels of the
gateway. To avoid long lasting search
algor i thms, a speci f ic contents
addressable memory (CAM) is mandatory
then. These CAM are subject to be re-
engineered anytime the manufacturing
process changes, which counteracts the
target to provide one solution for all
platforms. Besides that a standalone
‘bridge’-processor is highly oversized if the
purpose is just to provide messages from
one CAN-bus to a dedicated diagnosis
CAN-bus.

Diagnosis with DAFCAN

The DAFCAN follows a new idea to meet
the requirements for diagnosis in multi-
channel environments, for which NEC
recently submitted a patent. The key
element is the addition of a second ‘listen-
only’ protocol core to an existing AFCAN.
This second protocol core, the RXONLY-
channel of the DAFCAN, picks up the

signal from the other CAN-channels at
their RX-pin, one at a time. The host
processor selects the monitor channel
before invoking the diagnosis session. The
example below shows a 5-channel
gateway with four ordinary AFCAN macros
and one DAFCAN that is connected to the
diagnosis CAN-bus (DIAG). Each CAN-
interface provides 48 message buffers.
That concept will be used in a new device
that in short term is applied at major car
manufactures.

Once the RXONLY-channel of the
DAFCAN receives a valid message, i.e.
this is any message that has been
exchanged on the monitored CAN-bus, it
stores it into the message buffer memory
of the DAFCAN. The newly invented
‘Mirror Mode’ will take care to send the
received message to the diagnosis CAN-
bus automatically as soon as the bus
becomes available (idle).

The benefit of the architecture is that a
CAM becomes obsolete. It would be
anyway a challenge to design such a RAM
for a capacity of 240 message buffers. The
architecture fulf i ls al l the other
requirements that a diagnosis asks for: no

CAN Channels

Listen only
CAN

Machine

DIAG
CAN

Machine

DAFCAN

NPB I/F NPB I/F NPB I/F NPB I/FNPB I/F

CAN
Machine

MSG Ctrl
(including
MSGBuf)

AFCAN

MSG Ctrl
(including
MSGBuf)

CAN
Machine

MSG Ctrl
(including
MSGBuf)

AFCAN
CAN

Machine

MSG Ctrl
(including
MSGBuf)

AFCAN
CAN

Machine

MSG Ctrl
(including
MSGBuf)

AFCAN

Diagnosis
 CAN Bus

Gateway CPU

RX RX RX RX RX

EXT RX Input

iCC 2003 CAN in Automation

03-12

additional CPU load for the gateway
processor, no additional, external
components needed, all valid messages
are recognised, and predictable, short
latency for all monitored messages.

Further the adaptation of a different baud
rate between monitored CAN-bus and
diagnosis bus is automatically solved by
the listen-only protocol-core. Whenever a
particular channel shall be monitored the
gateway processor sets up the baud rate
of the source channel in the RXONLY
channel of the DAFCAN in advance.
During the diagnosis session the Mirror
Mode automatically provides the time gear
between source and destination CAN-bus.

Mirror Mode

The name ‘Mirror Mode’ for the transfer of
messages between a monitored bus and
the diagnosis CAN-bus was chosen
because any valid message exchanged on
the monitored CAN-bus is submitted to the
diagnosis system. Thus, the external
analysis equipment will obtain a true
image of the data exchange. Normally,
only those messages received by the
respective CAN-channel as pre-defined by

its configuration for the normal operation
are transferred.

Once the Mirror Mode is started, it
operates independently of the host
processor. On the one hand the latency of
monitored messages is predictable then,
and on the other hand the diagnosis
session does not impose any real time
infringement to the gateway processor -
two items, which can be of decisive matter
when trouble shooting an unexpected
behaviour.

Implementation Details

The DAFCAN provides 48 message
buffers. When no diagnosis session is in
place, these message objects can be used
like in a regular AFCAN macro.

During Mirror mode the upper 16 buffer in
the message buffer area are assigned to
the listen-only channel that is connected to
the monitored CAN-bus. The figure below
sketches the kind of operations applied for
each part of the message buffer RAM. The
‘regular’ CAN-channel (DIAG-CH)
performs its reception operations only on
the lower 32 buffers. However its transmit
operations are still executed through out

Message Buffer RAM DIAG- CH
CAN Machine

Messages mirrored
to DIAG-CH in
FIFO manner

RX
TX

Lower buffers are always
assigned to DIAG-CH
(TX & RX)

DIAG-THL supports
whole area of buffers

TX / RX

RXONLY- CH
CAN Machine

Ring Buffering

Msg#0
Msg#1

Msg#(m-16)

Msg#(m-4)
Msg#(m-3)
Msg#(m-2)
Msg#(m-1)

iCC 2003 CAN in Automation

03-13

the complete CAN RAM. Thus any newly
provided transmission request for any of
the upper 16 message objects is captured
automatically and respectively sent on the
diagnosis bus.

The RXONLY-channel stores any valid
message into the upper 16 message
buffers starting at buffer #32 and
incrementing the buffer number for each
new reception. There is no masking
applied at acceptance filtering. Neither
there is any set-up for identifiers in the
message buffers necessary. After
reception of a message from the
monitored channel, a dedicated state
machine, the mirror mode engine (MME),
automatically sets the transmission
request (TRQ) if no other TRQ is pending
in the upper 16 buffers.

The sequence of received message from
the monitored CAN-bus is maintained on
the diagnosis bus by this algorithm. The
figure above illustrates an example where
three messages are received on the
RXONLY-channel (top bar). The MME
(middle bar) recognises each of them
incrementing an internal counter (MMP).
However the transmission request (TRQi)
for the particular message buffer i is not
set before the previous message was sent
(DNi = 0). Thus the messages can not
overtake each other. The latency of the

first message received on the RXONLY-
channel is minimised. The DIAG-channel
instantaneously transmits the monitored
message.

Further the Mirror Mode provides enough
depth of its storage capabilities when long
messages are followed by short
messages. This even masters situations
when the diagnosis bus is busy
transferring messages of other nodes or
the gateway itself. Although this may be
not a kind of operation of choice during a
diagnosis session, the Mirror Mode can
tolerate to loose arbitration on the
diagnosis bus for a few messages without
loosing a monitored message.

The timing diagram on the next page
illustrates a communication of the gateway
processor while at the same time a
diagnosis session is act ive. I t
demonstrates that even during diagnosis
session normal application messages can
be sent or received. The example
assumes that the identifiers match the
message buffer number. The TX-message
of the host processor (TX(15)) wins the
internal arbitration against the monitored
message in buffer RX(33). The
transmission of monitored messages is put
on hold at that time and resumes after the
‘application’ message was successfully
transmitted.

Mirror Mode without
Application Communication on DIAG_CH

RX(32) RX(34)

TX(34)TX(32) TX(33)

RX(33)

32XX 33 34

DNi set 32 33 34

TRQi set 32 33 34

DNi clear 32 33 34

10 (idle) 2 03 2MMP 1

THL

DIAG bus

RXONLY
bus

DIAG_CH

MME

RXONLY_CH_CH

iCC 2003 CAN in Automation

03-14

Summary

The AFCAN provides a CAN interface to
be used on any future device of NEC. The
AFCAN eliminates any adaptations of
driver software by the customer when
changing the processor platform. Thus it
meets requirements by the newly emerged
HIS-standardisation efforts as its best.
With its scalable message buffer memory
the AFCAN covers low-, middle-, and high-
end applications on all CPU-cores.

The DAFCAN offers an enhanced support
for the demand of diagnosis in multi-
channel environments. The patented
Mirror Mode provides predictable latency
times of monitored messages without
causing any real time changes on the
gateway node.

Wiewesiek, Wolfgang

NEC Electronics Europe GmbH

Kanzlerstrasse 2

Phone:++ 49 211 6503-566

Fax: -6566

E-mail: wiewesiekw@ee.nec.de

Website: www.ee.nec.de

Mirror Mode with interleaved
Application Communication on DIAG_CH

RX(32) RX(34)

TX(34)TX(32) TX(15)

RX(33)

32XX 15 34

DNi set 32 33 34

TRQi set 32 33 34

DNi clear 32 33 34

10 (idle) 2 03 2MMP 1

THL

DIAG bus

RXONLY
bus

DIAG_CH

MME

RXONLY_CH_CH

TRQi set
by CPU

15

TX(33)

33

TX Interrupt

