
iCC 2003 CAN in Automation

02-7

Modular EDSs and other EDS enhancements
for DeviceNet

Viktor Schiffer, Rockwell Automation Germany

The current EDSs in use for DeviceNet are very versatile tools to configure slave de-
vices, but they have certain shortcomings when modular devices are to be configured,
specifically when it comes to determining the I/O sizes of the device to be configured
and working with parameters in the modular section of the device. Using modular
EDSs as already defined in the CIP common spec [1] in conjunction with a suitable
software configuration tool opens up a whole scope of new capabilities. This paper
describes several enhancements for EDSs including the concept of modular EDSs in a
step by step approach, explaining the required and optional keywords in the set of
EDSs required to describe a modular device and how these keywords interact. First,
the concept of an assembly is introduced and it is shown how this assembly can be
used in EDSs. In the next section, a set of minimum functionality modular EDSs (I/O
only) is explained while the following section expands their functionality by adding
configurable parameters in the modular parts of the device. Present and future capa-
bilities of this concept are then discussed and how they can be applied to modular
devices and even to devices that at first do not appear to be modular. Furthermore, the
paper details the object and functionality enhancements required in a device to benefit
from this concept. It also presents several sample EDSs and how they are used by the
configuration tool.

INTRODUCTION

The use of EDSs for the configuration of
DeviceNet devices has been around ever
since DeviceNet has been made public.
Recently, assemblies and modular con-
structs have been introduced that allow
better configuration of slave devices. In
particular, the extension into modularity
helps overcoming the limitations of tradi-
tional EDSs. While the primary application
of modular EDSs is expected to be for
modular I/O (rack) systems, its use is not
limited to that application. All configuration
screen shots shown in this paper were
taken with RSNetworx for DeviceNet
4.00.00 or higher.

ASSEMBLIES

The [Assembly] section describes the
structure of data blocks. Often such a
block is the data attribute of an Assembly
object; however, this section of the EDS
can be used to describe any complex
structure. The description of this data
block is similar to the mechanism that the
Assembly object uses to describe its
member list.

The contents of an assembly is described
in Volume 2, chapter 4-3.5.8 of the De-
viceNet specification [2]. All Assembly en-
tries consist of fields that describe the
general properties of the assembly and
fields that describe the individual members
of an assembly. While the overall size of
an assembly is always described in bytes,
all members of an assembly are described
as a set of bits to allow all possible struc-
tures.

Figure 1 shows a sample entry in an [As-
sembly] section.

[Assembly]

Assem5 = " Configuration", $ name

"20 04 24 05 30 03",1, $ path, size (in bytes)
,,, $ not used
4, Param1, $ # bits, reference
3, Param2, $ # bits, reference
1, ;

...

Figure 1: Sample Assembly entry

This example shows how the Assembly #5
is split into one group of 4 bits, described
by the Param1 entry of this EDS, one
group of 3 bits, described by the Param2
entry of this EDS and one group of 1 bit
without any further description.

iCC 2003 CAN in Automation

02-8

USE OF ASSEMBLY ENTRIES IN AN
EDS

In a normal (non-modular) EDS, Assem-
blies are mainly used in two cases: I/O
Assemblies and Parameter Assemblies.
The structure of the Assembly entry is
identical in both cases: Bit groups are
specified in size and described by ParamN
entries.

[IO_Info]
...
Input1 = 1, $ size = 1 byte
 4, $ 4 significant bits
 0X000F, $ compatible with all conections
 "1734 -IB4 Produce Connection", $ name string
 6, $ path length
 "20 04 24 03 30 03", $ assy obj, inst 3, attr 3
 "Producing connection contains state of the two inputs";
...
[Assembly]
Assem3 = "1734 -IB4 Produce Assembly",
 "", $ Path is implied (Assy obj attr3)
 1, $ total length in bytes
 0,,, $ no changes, ",,"= reserved
 1, Param1, $ # bits, Value for Input #0
 1, Param2, $ # bits, Value for Input #1
 1, Param3, $ # bits, Value for Input #2
 1, Param4, $ # bits, Value for Input #3
 4,; $ Pad bits

Figure 2: EDS showing an I/O Assembly

Figure 2 shows an example of how an
assembly is used for an Input entry and
Figure 3 shows how this is displayed in a
configuration tool (slave side, similar dis-
play on the master side).

Figure 3: Use of an assembly in an Input
entry

The entities described by Param1 through
Param4 may be addressable attributes,
but they do not have to. If a ParamN entry
is used only to describe the components of
an Assembly (without a path to an attrib-

ute), then it may be desirable to set the
descriptor of this parameter to “non-
displayed parameter”, [6].

Assemblies used as parameter assem-
blies allow the use of only one data struc-
ture containing all parameters of a device,
but still maintaining access to the individ-
ual parameters. What differs from “normal”
parameters is that up/download will always
take place as an entity (the parameter as-
sembly data is only one attribute!) and that
an individual parameter may consist of any
number of bits allowing packing of pa-
rameters, e.g. two nibbles in one byte.

[ParamClass]
 MaxInst=3;
 Descriptor=0x00;
 CfgAssembly=5;

[Params]

Param1 = 0,

,, $ no path!
0,0xC6,1, $ descriptor, data type, data size
"Bits 1 through 4","","", $ name, unit, help string
0,31,1, $ min, max, default
,,,,,,,,; $ other fields not used

Param2 = 0,
,, $ no path!
0x10,0xC6,1, $ descriptor, data type, data size
"Bits 5 through 7","","", $ name, unit, help string
0,3,2 $ min, max, default
,,,,,,,,,; $ other fields not used

...
[Assembly]
 Assem5 =

"Configuration","20 04 24 05 30 03", $ name, path
1,,,, $ 1 byte, default descriptor
5,Param1, $ 5 bits described in Param1
3,Param2; $ 3 bits described in Param2

Figure 4: EDS with Parameter Assembly

Figure 4 shows an example of a Parame-
ter Assembly and Figure 5 shows how this
is displayed in a configuration tool.

Figure 5: Use of a Parameter Assembly

iCC 2003 CAN in Automation

02-9

GENERAL PRINCIPLE OF MODULAR
EDSs

To make this explanation easier to under-
stand an example of a modular I/O rack is
used. Any modular device is made up of at
least 3 components:

- A Chassis. This may physically be pre-
sent or not. As a minimum, this is a
logical “container” in which the other
modules reside. A chassis has a
maximum number of “slots” that may
be populated.

- A module that connects to DeviceNet,
a Communications Adapter. This mod-
ule may or may not contain I/O data
and/or configurable parameters.

- One or more I/O Modules that “popu-
late” the Chassis. These connect to
DeviceNet through the “Adapter”. Typi-
cally, these modules contain I/O data
and/or configurable parameters.

0 1 2 3 4 5 6

...

7 N-1

Chassis with
N slots

DeviceNet

Adapter
Module Various I/O

Modules

Figure 6: Relationship between the three
Types of EDSs

Any system described by modular EDSs is
put together with a minimum set of three
EDSs:

1. At least one EDS for the Communica-
tion Adapter. There may be multiple
types of communication adapters that
can be used for any given chassis.
This may include communication
adapters for other CIP networks; chas-
sis and I/O modules would still stay the
same.

2. At least one Chassis EDS. Some
modular systems may support multiple
chassis sizes or types.

3. One I/O module EDS for every type of
I/O module that may populate this
chassis. The EDS may also indicate a
set of chassis that these modules may

populate, so that these EDSs can be
reused if the modules also plug into
other chassis.

These three EDSs are linked to each other
by certain mechanisms that are described
below. Every module EDS contains entries
for an “electronic key” that corresponds to
the chassis into which the module can be
inserted (logically or physically). Data links
between the communication adapter EDSs
and the I/O module EDSs are performed
through a proxying mechanism: The
adapter EDS contains entries using key-
words like ProxyAssemN, ProxyParamN
while the I/O module EDSs contain the
associated entries with the ProxiedAs-
semN, ProxiedParamN keywords.
All EDSs of this set must be registered
with the configuration tool, but typically
only the communication adapter(s) will
show up in the hardware resource window
of some tools.

EDS DETAILS

The description that follows will first look at
a modular design without parameters in
the I/O modules and later expand this
general principle to include parameters in
the I/O modules.

Modular system without configuration
parameters in the I/O modules

The first EDS to consider is a sample
chassis EDS:

[File]
...

[Device]
VendCode = 10000;
VendName = "Sample Vendor";
ProdType = 100; $ Any Device Type in the
 $ vendor specific range
ProdTypeStr = "Common Interfaces - No Device Object";
ProdCode = 1;
MajRev = 1;
MinRev = 1;
ProdName = "Test Chassis";
Catalog = "2000 -Chassis";

[Modular]
DefineSlotsInRack = 20; $ This chassis has 20 slots

These entries represent a virtual
electronic key. Each chassis has
its own key; it is virtual because
it does not exist in the chassis
itself, but only in the EDS

Figure 7: EDS for a Sample Chassis

As the chassis itself is only a “container”
without any I/O or parameters of its own,
no further definitions are required. The
chassis EDS shall not contain any I/O
definitions.

iCC 2003 CAN in Automation

02-10

The second EDS to consider is the com-
munications adapter EDS:

The communications adapter module EDS
serves several purposes:

• It defines how many chassis slots it
occupies: [Modular] section, Width
keyword

• It defines which slot in which chassis it
may occupy: [Modular] section,
RackN keyword. An adapter in a non-
CIP chassis must always sit in slot 0.
Non-CIP chassis are those chassis
that do not use a protocol from the CIP
family for communication between the
communication adapter module and
the I/O modules.

• It may define how a configuration tool
can get ID information on the other
(I/O) modules that sit in the same non-
CIP chassis. This is done via the
[Modular] section, Query keyword.
This Query statement links to a data
array that describes every module sit-
ting in the chassis. The width of this
data array is equal to the number of
bytes that describe the external ID of a
module; up to 16 bytes are allowed.
The length of this data array is given
through the number of slots in the
chassis, not counting slot 0 (the
adapter slot). This attribute (data array)
is typically placed in a vendor specific
object/attribute. The external ID is de-
fined in each of the EDSs of the I/O
modules that sit in this chassis. How
this information is extracted from the
I/O modules and written into this array
is up to the developer of the system;
DeviceNet only requires having the re-
sults addressable and readable.
Adapters without query support are le-
gal, but they miss many of the good
features that modular EDSs can offer,
e.g. they do not allow a configuration
tool to read which modules are actually
present in the chassis.

• It defines the I/O connection(s) to De-
viceNet. As a consequence it must
contain an [I/O Info] section. The
entries in this I/O Info section point to
assemblies so that the size of the I/O
data can reflect the actual assembly of
data coming from the individual I/O
modules.

• It defines how the I/O data of the
adapter (if any) and the I/O data of the
other modules in the chassis are as-
sembled into an input assembly and an
output assembly: see [Assembly]
section. There are several assembly
types that can be used to accommo-
date the various assembly principles
that may be used by a communication
adapter (compressed, padded etc.) [3].
Collecting I/O data from the I/O mod-
ules is described by ProxyAssemN
keyword entries that match the corre-
sponding ProxiedAssemN keyword
entries in the I/O module EDSs.

• It defines how parameter values are
communicated to the I/O modules in
the chassis. In the step-by-step ap-
proach of this paper, configurable pa-
rameters are omitted in this first exam-
ple. Details on how to include pa-
rameters are described later in the
section on parameters.

A typical adapter module EDS (without
parameters in the I/O modules) looks like
this:
[File]
...

[Device]
VendCode = 10000;
VendName = "Sample Vendor";
ProdType = 12;
ProdTypeStr = "Communications Adapter";
ProdCode = 1;
MajRev = 1;
MinRev = 1;
ProdName = "Sample Adapter Module";
Catalog = "2000-Adapter";

[Modular]
Width = 1; $ This module occupies 1 slot
Rack1 = 10000,100,1,1,1, , , ,0;
Query = "20 01 24 01 30 64", 0x0E, 1, "00";

[IO_Info]
Default = 0x01;
PollInfo = 0x0001,1,1;
Input1 = ,0,0x0001,"Input Data",,Assem1,;
Output1 = ,0,0x0001,"Output Data",,Assem2,;

[Assembly]
Assem1 = "Total Input Data Size",,,,,,8,,,ProxyAssem1;
Assem2 = "Total Output Data Size",,,,,,8,,,ProxyAssem2;
ProxyAssem1 = "Exp. Mod. Inp. Data",,,0b0110,,,ModuleMemberList;
ProxyAssem2 = "Exp. Mod. Outp. Data",,,0b0110,,,ModuleMemberList;

1

2
3

4
5

Explanations
see text

Figure 8: EDS for Sample Communication
Adapter Module

Explanation of details in Figure 8:

1. RackN entry:
This is where the connection to the chas-
sis EDS is made through the electronic
key, for syntax see [1] chapter 7-3.6.1.
The first 5 fields refer to the chassis de-
scribed above in Figure 2. Fields 6, 7 and
8 are reserved, field 9 contains the only
legal slot for this module (0). Multiple
RackN entries may exist if this module
can be used in more than one chassis.

iCC 2003 CAN in Automation

02-11

2. Query entry:
The first field contains a path description
to the data array that contains module IDs
(external IDs). In this example, it’s the
Identity Object, instance 1, attribute 100.
The second field contains the service code
(0x0E) to get the data (get_attribute_single
in this example). The third field defines the
number of bytes per module (width of the
array). The fourth field defines the external
ID code that is used to describe an empty
slot.

3. InputN, OutputN entries:
This entry follows the specification of the
InputN keyword of the DeviceNet speci-
fication with the following extension as
specified in [4]:
• The first field (size) is left blank (noth-

ing else makes sense since the I/O
size is not known in advance).

• The second field (number of significant
bits) is set to 0 (nothing else makes
sense since the I/O size is not known
in advance).

• Instead of pointing to a connection
path in fields 5 and 6, the name of an
assembly from the [Assembly] sec-
tion is given in field 6.

4. AssemN entries:
These two entries follow the syntax of an
AssemN entry as defined in [1] chapter 7-
3.5.7. Fields 2-6 are left empty. Fields 7
and above contain assembly member en-
tries. In this case, field 7 contains the
number of input/output bits of this adapter
module, field 8 is empty. Field 9 is empty,
therefore field 10 contains the reference to
the ProxyAssem1/2 entries described
below.

5. ProxyAssemN entries:
These keywords define the sum of the I/O
sizes of the modules in the chassis. They
follow the syntax of the AssemN keyword
with the modular enhancements defined in
chapter 7-3.6.2.3 of [1]. Field 4 now con-
tains the newly defined Assem type, see
[3]. In this case it is set to type 3, variable
size, compressed, adapter not included;
this means that every module may vary in
size, empty slots do not contribute any
data to the assembly and no adapter data

is included. More on Assem types in the
appendix. The last field (ModuleMem-
berList) "collects" all the I/O data defined
in the ProxiedAssemN keyword of each
of the I/O modules in the chassis. In this
case, ProxiedAssem1 describes input
data and ProxiedAssem2 defines output
data.

There are many variations of the type of
assembly that can be used and a descrip-
tion of these types would go beyond the
scope of this paper. A few more details are
shown in the appendix.

Finally, I/O module EDSs:

Every I/O module type in the chassis also
needs an EDS of its own that describes its
characteristics. The following features are
covered by this EDS:

• It defines how many chassis slots it
uses: [Modular] section, Width
keyword.

• It defines which slots in which chassis
it may occupy: [Modular] section,
RackN keyword. An I/O module in a
non-CIP chassis must always sit in a
slot other than 0. I/O modules that may
be used for multiple chassis have one
RackN entry for every chassis they
may populate.

• It defines a unique identity (the Exter-
nal ID within the chassis it may popu-
late) of the I/O module. In a non-CIP
chassis, this ID can be retrieved
through the data array defined in the
Query entry of the adapter EDS.

• It defines module I/O data assemblies
that are assembled into overall node
assemblies by the adapter module.
These assemblies (defined by the
ProxiedAssemN keywords) have to
match what is defined by the
ProxyAssemN keywords in the
adapter module.

• It defines module parameters and their
use, more on that in the section on pa-
rameters in modular EDSs.

Here is a simple I/O module EDS:

iCC 2003 CAN in Automation

02-12

[File]
...

[Device]
VendCode = 10000;
VendName = "Sample Vendor";
ProdType = 101; $ Any Device Type in the
 $ vendor specific range
ProdTypeStr = "Modular Discrete I/O";
ProdCode = 15;
MajRev = 1;
MinRev = 1;
ProdName = "Test Expansion I/O Module";
Catalog = "2000-I/O";

[Modular]
Width = 1; $ This module occupies 1 slot
Rack1 = 10000,100,1,1,1,,,,1,2,3,4,5,6,7,8,9,

 10,11,12,13,14,15,16,17,18,19;
ExternalID = "01";

[Assembly]
ProxiedAssem1 = "Input data Array",,,,,,16,;
ProxiedAssem2 = "Output data Array",,,,,,8,;

1

2

3

Explanations
see text

Figure 9: Expansion I/O Module EDS

Explanation of details in Figure 9:

1. Rack1 entry:
Every I/O module needs at least one Rack
entry. There may be multiple Rack entries
if the module can be used in more than
one chassis. This entry follows the same
syntax as in the adapter EDS, but there
are typically multiple legal slots, 19 in this
example (all but slot 0).

2. ExternalID entry:
This is the identification of this module that
can be accessed through the Query defi-
nition in the adapter EDS.

3. ProxiedAssemN entries:
In this example, there is a total of 2 input
bytes and 1 output byte. These two entries
follow the syntax of an AssemN entry as
defined in [1], chapter 7-3.5.7. Fields 2-6
are left empty. Field 7 contains the number
of input bits of this I/O module, entry 8 is
empty. The early versions of configuration
tools typically only use full bytes for I/O
sizes, i.e. any number of bits is rounded
up to the next multiple of 8.

The above is thus the complete set of
EDSs that is required to describe a
modular device without configurable pa-
rameters in the I/O modules. When the
above I/O modules sit in a chassis to-
gether with a communication adapter as
defined above, the total input data size will
be 1 byte for the adapter plus 2 bytes for
every I/O module and the total output data
size will be 1 byte for the adapter plus 1
byte for every I/O module. Other types of
modules in the same chassis may contrib-
ute other amounts of data.

Independent of DeviceNet, the developer
has to provide the following functionality
(summary of what is described above):

• An attribute (somewhere in a vendor
specific object/attribute) in the commu-
nications adapter with an array of
module IDs.

• A mechanism that reads all the module
IDs from the I/O modules across the
chassis backplane and writes them
into this array.

• A mechanism that builds an input as-
sembly and an output assembly from
the I/O data provided by each of the
I/O modules. This mechanism must
follow the rules of the algorithm de-
scribed in the EDS and executed in the
configuration tool, i.e. communication
adapter data (if any) first, followed by
the I/O data of the modules in the
chassis. Fractional byte I/O sizes must
be rounded to the next full byte before
they are added to the assembly.

• It is important to note the relationship
between the input/output entities of the
adapter and the actual modules:

• Input1 � Assem1 � ProxyAssem1 �
ProxiedAssem1 and
Output1 � Assem2 � ProxyAssem2
� ProxiedAssem2

Modular system with configurable parame-
ters in the I/O modules

Apart from configurable parameters in the
adapter itself that follow the normal pa-
rameter functionality, it is possible to have
configurable parameters “sitting” in the I/O
modules that are “proxied” by the adapter.
There are two different concepts that can
be implemented:

1. The overall number and meaning
of all configurable parameters is known.
The adapter provides access to all possi-
ble configurable parameters. Individual I/O
modules implement subsets of this overall
parameter set.
2. The overall number and meaning
of all the configurable parameters is not
known. The adapter will only provide
“templates” that will be used by the indi-
vidual parameters of the I/O modules. The
maximum number of configurable pa-

iCC 2003 CAN in Automation

02-13

rameters of this type in any given I/O
module must not exceed the number of
“templates” provided in the adapter. Early
versions of configuration tools may not
support both methods.

Methods #1 and #2 may be combined in
any given system once the functionality of
method #2 is implemented in the configu-
ration tool.

Let’s first have a look at method #1:

The adapter EDS contains a set of proxy
parameters that are listed in the EDS with
the ProxyParamN keyword. The I/O
modules use a subset of these parameters
by listing them under the ProxiedParamN
keyword in their individual EDSs, see ex-
amples below:

The adapter EDS defines the full set of
proxy parameters (2 in this example):

[Params]
ProxyParam4 = 0,6,"20 64 24 SLOT 30 04",,

0xC7,2,"Size","mm","",Module,Module,Module,,,,,,,,,;

ProxyParam5 = 0,6,"20 64 24 SLOT 30 05",0x02,

0xC7,2,"Color","","",Module,Module,Module,,,,,,,,,;

Figure 10: ProxyParamN Entries in a
Communication Adapter EDS

Explanation of details in Figure 10:

ProxyParamN entries:
The “SLOT” keyword in the path field is
used to point to the individual slots that
may be populated by I/O modules (1
through 19 in this example). The “Mod-
ule” entries are placeholder for the min,
max and default values that may be de-
fined in the individual I/O modules. When
the “Module” entry is present, it means
that the value for this field is to be ob-
tained from the corresponding field in the
ProxiedParamN entry of the EDS for the
I/O module. Without the “Module”
placeholder, any field defined in the
adapter EDS will be the same for all mod-
ules. With early versions of the configura-
tion tool(s), “Module” placeholders might
only be supported for the min, max and
default fields.

The I/O module EDS uses all of the proxy
parameters defined in the adapter EDS or

a subset of only those parameters that are
actually used in this type of I/O module.
The example below shows the full set to
illustrate the use of enumeration. If enu-
meration is used it may be written into the
adapter module EDS (identical enumera-
tion for all modules) or into the I/O module
EDS:

[Params]
ProxiedParam4 = ,,,,,,,,,0,20,5,,,,,,,,,;

ProxiedParam5 = ,,,,,,,,,0,4,1,,,,,,,,,;

ProxiedEnum5 = 0,"red",1,"green",2,"yellow",

 3,"pink",4,"blue";

Figure 11: ProxiedParamN Entries in an
I/O Module EDS

Explanation of details in Figure 11:

In the ProxiedParam4 entry, everything
but the min, max and default values are
already defined by the ProxyParam4 in
the adapter EDS.
The ProxiedParam5 entry is similar to
ProxiedParam4 , but this shows how
enumeration is used. It may be different
for every type of module used.

Any parameter in the adapter (proxy pa-
rameter) that is not matched by a pa-
rameter in the I/O module (proxied pa-
rameter) and vice versa is not configurable
and will not be displayed in the configura-
tion tool.

Method #2 is not totally different, but it
means that more fields in the Proxy-
ParamN entry are referred to the individ-
ual I/O module’s ProxiedParamN entry,
e.g. Parameter Name or Units String.
Since this method is not yet implemented
in any known configuration tool, no further
details are described in this paper.

To accommodate configuration parame-
ters in the individual modules plugged into
the chassis of a modular DeviceNet de-
vice, the following structure (see Figure
12) must be provided in the adapter on top
of what is needed to transmit I/O data,
based on the functionality of the current
version of the configuration tool:

• An array of attributes, typically created
in a vendor specific object:

iCC 2003 CAN in Automation

02-14

• This object has as many instances
as there are slots in the chassis.

• The number of attributes in this ob-
ject is equal to the superset of pa-
rameters of all modules combined.

• Parameters that are identical (name
and data size) in two or more modules
can be handled through the same at-
tribute.

• Parameters that are not identical need
to be represented by individual attrib-
utes.

• The resulting number of attributes may
thus be much larger than the maximum
number of parameters in any given
module.

• The adapter must have a mechanism
to exchange data between this array of
attributes and the individual modules
based on the list of parameters sup-
ported by each module.

1 2 3 4 5 6 7 8 9

1

2

1

1 1 1 1 1 1 1 1

5

4

3

Instance ID

2 2 2

2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

5

3

4

1

2

4

Slot number 1 2 3 4 5 6 7 8 9

Parameter
array in
adapter

Actual
parameters in
I/O modules

Figure 12: Relationship between
Parameters in Adapter and I/O Modules

Under certain conditions, the required data
array can be reduced in size by creating
multiple ProxyParamN entries in the
adapter EDS pointing to the same loca-
tion, but only using one of these entries
through a ProxiedParamN entry in the
module EDS. This will work as long as this
set of ProxyParamN entries uses the
same data type. The end result will be
very similar to method #2 (where more
fields are referred to the module EDS), but
the adapter EDS will still have to have one

ProxyParamN entry for every parameter
used in the device.

CONCLUSION

The above described functionality exten-
sions provide a very powerful enhance-
ment to the configuration methods for De-
viceNet products. In particular, the capa-
bilities of modular EDSs go far beyond the
original concept of EDS-based configura-
tion and allow a functionality not found in
any other fieldbus system. The paper
above gives a description of the use of
assemblies and of the general principle of
modular EDSs. This extension to modular-
ity opens a huge range of additional pos-
sibilities that go well beyond the scope of
this paper. For further reading, a more
complete description of further details is
shown in the appendix.

REFERENCES

[1] CIP Common Specification, Release
1.0

[2] DeviceNet Specification, Release 2.0,
Errata 5

[3] CIPSE-001-003, Adapter Rack/Assem
Data Formats

[4] DSE-001-085, AssemN Keyword in
IO_Info Section

[5] CIPSE-001-004, Assembly Size Con-
trolled by Parameter

[6] CIPSE-001-001, EDS Internal Only
Parameter Descriptor Bit

Rockwell Automation Germany
Düsselberger Str. 15
42781 Haan
Germany
Phone: +49-2104-960-193
Fax: +49-2104-960-197
Email: vschiffer@ra.rockwell.com
Website:
http://www.automation.rockwell.com

iCC 2003 CAN in Automation

02-15

APPENDIX: Further Sophistication

I/O Module renumbering:

There may be cases where the natural slot
numbering (starting at slot 0) may not be
appropriate. To avoid user confusion, the
following method as defined in paragraph
7-3.6.1 of the CIP Common spec can be
used to create a new naming scheme for
the slots:

 [Modular]
DefineSlotsInRack = 20; $ This chassis has 20 slots
SlotDisplayRule = Param1;

[Params]
Param1 = 0,,,0x02,0xC6,1,"Slot Naming Convention",

"","",0,19,0,,,,,,,,,;
Enum1 =
0, "Adapter",
1, "Slot 0",
2, "Slot 1",

...
19, "Slot 18";

Figure A 1: Example of renaming slots in a
modular chassis EDS

In principle, any text can be placed into the
enumeration, but it is advisable to keep it
short to make it easier to read in the slot
display column.

Further I/O Assembly Details:

There are various types of assemblies and
several examples are described in [3]. To
describe all of them in full detail will go
beyond the scope of this paper. However,
the following details of the use of AssemN
and ProxyAssemN are described here,
because they will often be used:

Variable I/O size modules:

[5] describes a method that allows settable
I/O sizes within assemblies:

First of all, there must be a data structure
that allows getting and setting the I/O size
values for all modules, e.g. through the
following definitions:

 [Params]
ProxyParam4 = 0,6,"20 04 24 SLOT 30 10",,0xC7,2,"Input Size",

"Bytes","",Module,Module,Module,,,,,,,,,;
ProxyParam5 = 0,6,"20 04 24 SLOT 30 11",,0xC7,2,"Output Size",
 "Bytes","",Module,Module,Module,,,,,,,,,;

Figure A 2: ProxyParamN Structure for
Variable I/O Size

This structure must be mirrored by an
equivalent structure in the I/O modules,
e.g.

[Params]
ProxiedParam4 = ,,,,,,"","","",0,4, 2,,,,,,,,,;
$ Input data size between 0 and 4 bytes, default 2 bytes

ProxiedParam5 = ,,,,,,"","","",0, 2,1,,,,,,,,,;
$ Output data size between 0 and 2 bytes, default 1 byte

Figure A 3: ProxiedParamN Structure for
Variable I/O Size

The I/O sizes set by this method can now
be used in suitable ProxyAssemN state-
ments in the adapter EDS:

[Assembly]
ProxyAssem1 = "Expansion Module Input Data",,ProxyParam4,
 0b0110,,,ModuleMemberList;
ProxyAssem2 = "Expansion Module Output Data",,ProxyParam5,
 0b0110,,,ModuleMemberList;

Figure A 4: ProxyAssemN Structure for
Variable I/O Size

The corresponding ProxiedAssemN
statements in the I/O module EDS will then
look like this:

[Assembly]
ProxiedAssem1 = "Input Data Array",,,,,,,;
ProxiedAssem2 = "Output Data Array",,,,,,,;

Figure A 5: ProxiedAssemN Structure for
Variable I/O Size

Text description of I/O assemblies:

As explained in the main text of this paper,
RSNetworx for DeviceNet 4.00.00 and
higher allows the association of names to
I/O assemblies or part of these assem-
blies.

The same method can also be used for
modular assemblies by placing assembly
information in the I/O module EDS as fol-
lows:

[Assembly]
 ProxiedAssem1 = "Input data Array",,,,,,8,Param1,8,Param2;
...
 [Params]
 Param1 = ,,,0x0, 0xC6,1,"Input Data","","",0,0xFF,0,,,,,,,,,;
 Param2 = ,,,0x0, 0xC6,1,"Status","","",0,0xFF,0,,,,,,,,,;

Figure A 6: EDS Entries for I/O Assembly
Description in Modular Device

The result will then look like this:

iCC 2003 CAN in Automation

02-16

Figure A 7: I/O Assembly Display for
Modular Device

Any assembly members that do not carry
names defined by this method will be
shown as <Undefined>.

Monitoring of I/O data:

RSNetworx for DeviceNet also allows dis-
playing I/O data of assemblies by cyclically
reading these values from the device. To
do this, the assemblies described in As-
semN or ProxyAssemN entries must
contain a path to the data that is to be
monitored. This is achieved by inserting
another “layer” of assembly into the [As-
sembly] section of Figure 8, see Figure A
8.

[Assembly]
Assem1 = "Total Input Data Size",,,,,,8,,,Assem 3;
Assem2 = "Total Output Data Size",,,,,,8,,,Assem 4;

Assem3 = "Input Modules Data Size ","20 XX 24 SLOT 30 XX ",

,0b0110,,,,ProxyAssem1;
Assem4 = "Output Modules Data Size ","20 YY 24 SLOT 30 YY",

,0b0110,,,,ProxyAssem2;

ProxyAssem1 = "Exp. Mod. Inp. Data",,,,,,ModuleMemberList;
ProxyAssem2 = "Exp. Mod. Outp. Data",,,,,,ModuleMemberList;

Figure A 8: Path for I/O Data in Assembly

The "20 XX 24 SLOT 30 XX" and "20
YY 24 SLOT 30 YY" fields in the As-
sem3 and Assem4 entries point to the
locations where the input and output data
of the individual slots can be read.

Figure A 9 shows how monitored I/O data
is displayed within the configuration tool.
The module that was monitored was an
Allen-Bradley 1798-IB4 (FlexArmor input
module with 4 input points).

Figure A 9: Example of I/O Data
Monitoring

