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In the past decade much work has been dedicated to an analysis of performance characteristics of
CAN based systems. The present contribution outlines a project which continues and extends earlier
research by other authors. Following an idea borrowed from stochastic control theory, we introduce
a cost functional C' with the expectation value E[C'] = Z]\szl ¢m PRy > Dy, ], which serves as
a quality measure of timeliness. Here, M is the number of priority classes, P[R,, > D,,] is the
probability that a frame of priority class m does not meet its deadline D,,, and the coefficient ¢,
denotes the cost resulting from this event. Several methods of determining these probabilities are
described and compared. A close examination of the expected costs yields useful information about
the qualtity of the system’s temporal behaviour. In particular, the analysis can be applied if the
system is perturbed by stochastic noise. Preliminary results are presented which were obtained by
applying recent work of Navet & Song as well as by simulation using the simulator package NetSim

of i+ME.

1 Introduction

This paper outlines a project which deals with the temporal behaviour of real time systems under
the influence of a noisy environment. As an example of outstanding importance the Controller
Area Network (CAN) protocol is considered. Our approach is based on the concept of cost
functionals (or simply: cost functions), which is sufficently general to be applicable to other
systems in an analogous way. Cost functions, when suitably defined on basis of empirical data,
can be regarded as a kind of quality measure or metric. In the context of the present paper, as
explained in detail in section 3, we shall consider a quality measure of timeliness. A detailed
discussion of real time metrics may be found in the book of Nissanke [25].

The approach of this paper is formal. In the research area of high speed networks there exists
a countless number of papers applying formal and analytical methods. Presently, in the area of
fieldbus systems, there seems to be no comparably widespread use of this techniques. But the
situation is changing.

This contribution gives an account of the methods used in the project and presents some pre-
liminary results. In section 2 a brief survey of priority queueing systems is given; in particular,
an early application of the classical Cobham formula to an error model of CAN is mentioned.
In section 3 the idea of a cost functional is discussed. The traditional approach presumes that
waiting causes costs. Alternatively, the approach forming basis of the work presented here,
presumes that costs arise in the case that messages miss their deadlines. This requires to apply
methods for determining probability distribution functions of response times. Therefore, in sec-
tion 4, several of these methods are considered and compared. One approach uses well known
soujourn time distribution of queueing theory. The technical problem consists in numerically
inverting Laplace transforms. Another approach relies on recent work of Navet & Song who
extend the worst case analysis by Tindell et al. by a stochastic error model. Last but not least,
simulation is one approach which might give some insight even in highly complex systems. Fi-
nally, in section 5, some preliminary results are presented, which demonstrate the potential and
shortcomings of the methods. Presently, none of the methods gives one unique final answer to
any question of interest. In a table, the methods are compared with each other, and some of
their benefits and shortcomings are shown. Section 6 concludes the paper with a summary and
some perspectives.



Research of this kind is, by its very nature, fairly formal. Nobody will expect a practioner to
learn probability theory and stochastics before he or she will apply the methods presented here.
Therefore, eventually, all of the formalism has to be cast in tools which can be used without
knowledge of the formal machinery behind the scenes. This constitutes part of future work.

1.1 Controller Area Network (CAN)

The CAN protocol is a member of a class of protocols usually referred to as “autobus” protocols
[18]. Nowadays, applications of CAN exist in many industrial areas. However, the decisive
impetus for the growing market of CAN interfaces, which has nowadays established itself as a
mass market, came from the decision of the automobile industries to apply CAN. Sales forcast
of CAN accumulated production volume by the end of this century prognosticate a total of 140
million units [20], [21, p. 29]. With respect to the work presented here this large number of units
is the key argument to apply probabilistic and stochastic methods. Detailed monographs about
CAN are e.g. [19], [7], and [21].

1.2 Real time systems

In the past decade there has been some debate about the real time behaviour of the CAN
protocol. It was argued that CAN, being part of the class of random access protocols, cannot
have deterministic response times. Although this is certainly true, it only goes halfway towards
finding a complete answer. Meanwhile, a lot of work has been devoted to this question and
matters seem to have been clarified to a large extent.

Usually, two types of real time requirements are considered: soft real time, and hard real time.
The essential difference is that, in hard real time systems, timing requirements have to be
met strictly and without any exception. However, in ordinary technical systems one cannot
be absolutely sure of anything: there might always be some exceptions. Of course, there’s no
point in forming stochastic models of situations which might occur with some excessively low
probability only of, say, 10740,

If, however, probabilities of any events, which might realistically occur, have a broader range
from “technically reasonable” to “unreasonably low” then a stochastic model should be formed
and, on a descriptive level, the conceptual difference between hard real time and soft real time
disappears.

There exists one common problem with an interpretation of probabilities. We are always faced
with the question: “What is a low probability?” One good answer, at least in principle, is
to look at the expected cost caused by an event which will harmfully effect a system. In his
textbook on real time systems, Kopetz [16, p. 304] writes: “Critical Failure: A failure is critical
if the cost of the failure can be orders of magnitude higher than the utility of the system during
normal operation.”
hard real-time computer system. Clearly, even if one can be certain that the probability of some

Here, safety critical real-time computer system is used synonymously for

disastrous event will be very low this knowledge is of little use if, at the same time, the resulting
cost from this event will be exorbitantly high.
It is in fact this point of view which will be made precise and applied in the context of CAN.

2 Priority queueing systems

Collision resolution on a CAN bus is achieved by assigning priorities to the message classes.
Therefore, many features of CAN based systems can be modelled using priority queueing sys-
tems. Since the pioneering work of Cobham [3, 4] priority queueing systems have extensively
been studied.



Table 1: Classification of priority queueing systems
non-preemptive discipline
(relative priorities)

preemptive resume

(with work conservation)
preemptive discipline
(absolute priorities)

without resampling
preemptive repeat
(without work conservation)

with resampling

alternating priorities

2.1 Classification

Table 1 shows the standard classification of priority queueing systems as it can be found in
the literature (see e.g. [9]). If there is no external noise present the familiy of non-preemptive
systems reproduces essential properties of CAN adequately. Nevertheless, these systems have
also been used to model noisy systems, see [6].

Many generalizations of these classical systems have been discussed in the literature. In par-
ticular, queueing systems with preemption-distance priorities as investigated by Herzog [10, 11]
as well as queueing systems with server vacations might be useful for forming error models (see
the references in [9, p. 274]). These systems are beyond the scope of the present paper.

2.2 Cobham’s formula

The classical work by Cobham [3, 4] initiated the investigations on priority queueing systems.
For a non-preemptive scheduling strategy the following equation (Cobham’s formula) gives the
expected waiting time for a given message class:

Wo
(1-mies) (1= 275 1))

where Wy is the expected residual service delay:

E[W,,]= form=1,2,...,. M (1)

1 M
Wo = 52,%1@[5]‘] (1+¢)
7=1

(p;: load factor, E[S;] and £;: expected value and variational coefficient of transmission /service
time of message/job class j)

A comparative analysis of CAN and ABUS by Dudeck et al. [6] has been based on Equation (1).
Within their model these authors have also considered the effect of errors on transmission time.
The extra delay of messages resulting from bus errors is taken into account by introducing some
variation of service time.

3 Cost functional

The notion of a cost function has proven to be useful in many fields, e.g. in the theory of control
of stochastic processes, see [23]. Some of the advantages of this conception are the following

e A cost function may be used as target for optimization.



e Quality aspects of systems and configurations of a different kind can be compared on the
basis of one quality measure instead of considering a whole bunch of probability distribution
functions.

e It is possible to evaluate a system as part of a larger system.

3.1 Basis of evaluation: expected waiting time

In the following we briefly describe one of the well-known results of queueing theory based on a
cost function. If waiting involves charges, we can write

costy, = v Wi,

for message (job) class m with some constant v, (m = 1,2,..., M). Assigning priorities may
be written as a permutation 7;, where 1 < ¢ < M!. Then, the (total) cost is a random variable

') with mean E [C(i)]:

v E [Wm . 2)
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M
=35, w0, E {Cm] -
m=1

m=1

One of the established results due to Kleinrock [14] states that this expectation value will
strictly be minimized in the following way: if the quantities v,,/p,, are sorted in descending

order according to
Tmy o Tme > Jow

Pmy Pma T Pmy

myp,ma,...,mpp

Y ) minimizes the expected cost:

then the assignment of priorities m,,; = (
E {C@pﬂ <E {C“)} for 1< i< M.

This procedure reduces the original problem of complexitity M! to the problem of sorting an
array.

3.2 Basis of evaluation: timeliness

There are situations where timeliness is of primary concern rather than high throughput. In
this case, some cost will incur if deadlines are missed. An approach based on a cost function
which models this situation adequately would be the following. In case of violating the timing
constraint R,, < D,,, where R,, and D,, are the response times and deadlines of messages of
class m, respectively, some distastrous event might happen with resulting cost ¢,. A system
designer who wishes to establish a quality measure of this kind has to specify pairs (¢, D)
for each message class m. It might of course be a problem to choose reasonable values for ¢,,
and in most cases there will be no unique solution. However, as Kleinrock [14, p. 126] remarks,
quite often decisions are being made regarding the relative system performance among classes
which imply some form of cost function, perhaps unknown to the user.

So, for a given message class m, the random variable cost,, may be written as:

o _ [0 ifR.<D,
COStm = ¢ if R, > D,,

and the total cost is

M
CO=>"c,0RY) - D,)
m=1



Here O(z) is the unit step function.
For the sequel the quantity of primary interest to us will be the average cost:

E|CO] = 3 enP[RY > Dy | (3)

m=1

It is exactly this quantity which has to be considered by an insurance company in the process
of determining a premium.

Unfortunately, there seems to exist no theorem analogous to the algorithm of subsection 3.1,
which allows to minimize expression (3). In many situations, however, it will suffice to keep the
cost reasonably low without minimizing it in a strict sense. This will be discussed in section 5
in more detail.

Nevertheless, a necessary condition on some threshold of the cost function can be set up. If for
any of the message classes stringent timing conditions are important then a system, which is

operated in a range where E [C(i)] I~ <mi2M Cm, behaves in such a way as if one of the messages
1<m<

would almost always be late.
Therefore, operating the system in a technically reasonable way requires that at least the fol-

lowing holds true:
E {C(i)} < min_ ¢y (4)
1<m<M

Of course, adopting expression (3) as a basis is just one approach; in particular, it would be
possible and meaningful to include other cost factors which ultimately even might dominate the
right-hand side of (3). In this case any considerations on optimal priority ordering would be
obsolete.

4 Response times

In order to base an evaluation of timeliness on Equation (3) the cumulative complementary
response time distribution has to be calculated. Unfortunately, in most cases, this is not easily
obtained. In the following we summarize some of the methods which yield information on this
distribution.

4.1 Worst case considerations
Models without stochastic noise

Under the assumptions that there is no external noise present and that the messages to be
transmitted are periodic, upper bounds on the response times can be given. This situation has
been considered and analyzed in all detail in a series of papers by Wang & al. [32] and by Tindell
& al. [30, 28, 31], see also [21, p. 253]. At a first glance, this work might appear of no use to the
problem of determining probabilities for missing deadlines, as presented in this paper. However,
the extension of the worst case analysis as conceived by Navet & Song [24] yields an extremely
useful estimate of these probabilities. The following subsection summarizes and reformulates
some of their key results.

Following Tindell & al. we characterize a periodic message class m by a quadrupel of the form
(Cmy Ty Jiny D). Here, C), is the transmission time of messages of class m with period T,
queueing jitter J,,, and deadline D,,. An explicit expression for the transmission time is:

oo ([ (34 + 8s,,) /4] + 47 + 8s,,) Thir  for standard CAN [2, part A] (5)
Tl (1544 88m) /4] + 67+ 8sy,) e for extended CAN [2, part B]



For a detailed justification of a denominator of 4 see [21, p. 255]. Then, the queueing delay
(interference time) of message class m satisfies

I, = max C;+ Z (I, +J; + i) /T;1C; form=1,2,..., M. (6)

Here, 7;; is the bit time and hp(m) and [p(m) are the sets of priority classes higher and lower
than m, respectively.

These equations can numerically be solved for I, by iteration.

Then, the response time is given by

with the additional constraint

In [29] Tindell & al. extended their work by a deterministic error model.

Models incorporating stochastic noise

A realistic model incorporating external perturbations of a CAN bus has to take account of its
stochastic nature. In a remarkable paper Navet & Song [24] (CiA Research Award 1997) have
extended the worst case analysis by a stochastic error model. Their results yield estimates of the
probabilities of missing deadlines and, consequently, estimates of the expected cost as decribed
in section 3.2. The idea is to add one term in Equations (6) which introduces an extra delay in
the case of bus errors.

If exactly k errors occur the interference time is implicitely determined by

Im:Em(k)—l— érllax C + Z —I—J]'—I—Tbit)/T]‘-‘ C]‘ (8)
J p
j€hp(m)

where

FE,,(k)=k {23 -1+ max C‘).

(k) ( T ehp(myofmy

Obviously, an increasing number of errors will increase the response time. So, at some value
of k, the messages will no longer be scheduable or, more formally, Equation (8) will have no

(max)

solution. Therefore, one can ask for the maximal number of errors ky, keeping the messages
of class m scheduable, i.e. which does not violate the timing constraint (7).

So far, the model is still purely deterministic. If, in addition, a stochastic model for the occurence
of errors is adopted then probabilities of missing deadlines can be estimated.

In the following we briefly summarize some of the results relevant to the subject of the present
paper. The mathematical arguments of [24] have slightly been straitened.

Let X () be the total number of errors during an interval of length ¢; then the complementary

probability distribution function (PDF) of X (¢), evaluated for t = R(mw) at k= k7(n 95), yields
estimates of the probabilities required in Equation (3):

m =1 —P| X (R(m2)) < fmar)

The error model conceived by Navet and Song presumes that errors are either single errors or
error bursts which occur with relative frequencies of 1 — v and «, respectively, where 0 < o < 1.
Let N(t) be the total number of error events and y; the number of errors involved in event i.
Then X (¢) can be written as



N(t)
Xty =>"u.
i=1

It is natural to assume that the random variables y; are independently identically distributed
(i.i.d.).
Conditioning the distribution P[X (¢) < k] on N (t) yields

k
P[X(t)<k]=>_ FupPn fork=01,2,... (9)
m=0

where F,,;, = P[S,, < k] is the PDF of

Sm =Y _ i (10)
=1

and P, = P[N(t) = m] is the probability density function (pdf) of N(¢). Note that F,; = 0
for m > k.

Equation (10) essentially says that S,, is a sum of m i.i.d. random variables y;. Therefore, its
PDF is an mth convolution power of the PDF of y;. Denote these distributions by F,,, and A,
respectively; then, F,, can be obtained through F,, = A™® or, equivalently,

Fo=F,_1®A form=1,2,....

This equation, written explicitly, takes the form

k—m+1
For= Z a1 p—; form,k=1,2,.... (11)
i=1

Here, a; = P[y; = ¢] is the pdf of the random variables y;.

With For, = 1 for £k = 0,1,2,..., Equation (11) allows to determine the matrix F,,x, provided
the coefficients a; are known.

So, in order to evaluate Equation (11), some hypothesis has to be accepted on the kind of
distributions of N(¢) and y;.

Navet & Song propose the following: error events form a Poisson stream, i.e. the pdf of N (¢) is

P _ (At)me—/\t
T ml '

Then, the resulting distribution of X (¢) is a so-called generalized Poisson distribution (or mixed
compound distribution).
Furthermore, they assume that the burst size u is distributed with parameter p (p+ ¢ = 1)
according

Plu=k]=kp** ' for k=2,3,....

Then, the distribution ay = P[y; = k] turns out to be (for details see [24])

0 for k=0
ap=13 l—a+ap? fork=1 (12)
akp?qh1 for k > 2.

Key Equations (11) with (12) and (9) can be solved numerically. Some applications using cost
functions will be presented in section 5.



There remains the task of undersetting these distributions empirically or, at least, to determine
the distribution parameters by measurements. For further details, see [24].

As demonstrated in the present paper another problem is that a worst case analysis might be
too pessimistic in some situations. A system can violate conditions (6) and (8) although the
messages of all classes are scheduable as simulations show. The mini network in [21, p. 419] is
one example. This will be discussed in more detail in section 5.1.

4.2 Traditional stochastic queueing systems

Another way of modelling CAN systems is to look at analytic queueing models. Queueing models
such as the the classical systems investigated in [13, 5], see also [9], rely on the assumption of a
Poisson stream of message arrivals which is not well adapted to show the behaviour of a mixture
of sporadic and periodic messages. So, at best, this will give some general indications on the
real time behaviour of CAN systems.

On the other hand, in the two or three past decades an immense knowledge on all kinds of
priority queueing systems has been accumulated. In particular, systems with so-called server
vacations might be interesting for forming error models of CAN systems. An excellent review
on priority queueing systems may be found in [8].

Despite of the restrictions discussed here, a first step could be to look at the detailed response
time distribution corresonding to the classical model [13, 5], thus generalizing results of Dudeck
et al. [6].

Adopting some of the notational conventions introduced by Gnedenko & Kénig [9], the key
equations describing an M/GI/1/0o-PRIO[NP] system can be summarized as follows.

The busy-period distribution S(,,) by demands of priority m and higher is given by

S(*m)(s) = B(*m)(s + Am) — /\(m)S(*m)(s)) m=1,....M (13)
where Ag,y = 2070 A B(*m)(s) =37, A(A")BZ»*(S) and A := Appy. Here, following a standard
notationial convention, we denote by X*(s) the Laplace transform of the pdf of the random
variable X, explicitely, X*(s) = E [e_SX] for s € C.

Although a closed-form solution of Equation (13) is available [9, p. 276] a numerical solution

could more easily be obtained on basis of an iterative scheme.
Then, the waiting time is given by

M
Puim-1(s)+ 3 A (1= B (ma(5)
()= =

W*
8 = A+ Am By, (Ym-1(8))

m

where

7

7 1
Prn = Z AN E[B;"], in particular — := E[B;]
=1

pm =1- Pm1
Ym (S) =s+4 /\(m) — /\(m)S(*m)(S)

From this equation, the classical Cobham formula (1) may be reproduced through E[W,,] =
—W;'(0). Equation (14) generalizes the results by Dudeck et al. [6] mentioned above, provided
the Laplace transform involved will be inverted.

So, the technical problem to deal with is a numerical inversion of the Laplace transform in
Equation (14). An extensive literature exists on techniques of numerical inversion of Laplace
transforms. An in-depth review has been given by Abate & Whitt [1].



So far, in our project, a few tests have been carried out but further investigation will be needed
to obtain numerically stable solution under realistic conditions of a CAN bus, in particular to
obtain numerically stable estimates of distribution tails which are required in Equation (3).
Results will be published elsewhere.

4.3 Simulative Models

Simulation is the prominent method for studying complex systems. The main advantage is
that realistic conditions can be implemented which could hardly ever be incorporated into an
analytical model. Therefore, in the project presented here, we use the simulator NetSim [12],
a commercial product of i+ME. A variant of this simulator with restricted functionality is
distributed with the CAN monography [21]. Some preliminary results may be found in section 5.
Simulative results of that section were obtained by an analysis of the files *.tim, see [21, p. 422]
for details. Up to now, however, no serious statistical analysis has been performed. Instead, we
simply take relative frequencies as probabilities.

On the other hand, there are at least two major drawbacks of simulation. Firstly, simulation
times can be extremely large so that rare events such as missing deadlines will not be seen.
Often however, these are of particular interest. We plan to include recent results on rare event
simulation of queueing systems. A review with special emphasis on queueing systems has been
given in [17]. Secondly, presently available simulators are not truelyexztensible in a contemporary
understanding. Here, newer software technologies such as Fxtensible Programming as conceived
by Wirth, Gutknecht, and others [33, 26, 22] should be applied. Among other things, this should
open the possibility to use arbitray, user-defined distributions including empirical distributions
in simulation without recompiling any part of the existing simulator. So, e.g., NetSim does not
allow for the possibility to consider a distribution as in Equation (12).

4.4 Comparison of methods

Unfortunately, so far, there seems to exist no method which will answer all questions related to
response times of CAN systems in all situations. All of the methods described in this section
have their specific benefits and shortcomings. Table 2 summarizes and compares some of them.

5 Case studies

In order to give an idea of the performance measure introduced in the previous sections we start
our discussion with a typical example. The curves plotted in Figure 1 represent cost functions
obtained from a worst case analysis with the stochastic error model described in subsection 4.1.
The analysis is based on data of a configuration (“PSA benchmark”), which has been introduced
and discussed by Navet & Song [24]. More details will be given in subsection 5.2.

The parameters a, p, and A of subsection 4.1 have been set to & = 0.1, p = 0.04 (taken from [24])
and A\/s™! = 0,20,40,60,80. Sections (a) and (b) of Figure 1 show cost functions for standard
CAN and extended CAN, respectively. For simplicity, the cost coefficients ¢,, introduced in
Equation (3) have been set to unity.

The shape of the curves in sections (a) and (b) is similar, but the curves of section (b) are shifted
to the left resulting in some increase of cost.

If there are no errors on the bus (A = 0) the cost function is a step function. This can easily
be explained: decreasing the transfer rate, i.e. proceeding from lower to higher values of 73 in
the diagram, tightens the timing constraints (7) because the response times are increased. As
a consequence, messages will not keep up with these constraints. Therefore, at each of these
steps, the expected cost is increased by 1 until the maximum is reached. The maximum of E [C']
could be normalized to unity but the only effect would be a rescaling of the ordinate.



Table 2: Comparison of methods
Method Benefits Shortcomings
Worst-Case-Analysis > exact formula exists > special assumptions on interarrival times
required

> can be solved by iteration

. . . > ti t be t imisti
> algorithm is easy to implement estimate may be too pessimistic

Analysis of Stoch. QM | > exact statements on probabilities, ex- | in traditional models: interarrival times
pected cost, and asymtotic behaviour avail- | are distributed exponentially

able

> therefore, in these models, cyclic mes-
> dependence on parameters can be studied | sages are not included adequately

fairly easily > formal complexity of analytical models

> method is more general than worst case | can be high
analysis

> conceptually: hard and soft real time be-
haviour described in one model

Simulation > realistic assumptions can be used in im- | simlulation is one single experiment for
plementions (e.g. on interarrival times) one configuration

> simulations be may extremely time con-
suming

> conventional simulation does not include
rare events, which are of particular interest
s0: rare event simulation should be
applied

Of course, from a practical point of view, bit times beyond the critical value 75, are not of
interest. The critical bit time 7y;, is the upper limit of bit times such that for 7, < 7, all
messages are schedulable.

Figure 1 also shows the cost function for some other values of A. The interesting point here is
that the expected cost at values below 7, may be above 1. A system operated within this range
behaves as if the messages of one of the priority classes would constantly miss their deadline
or, to put it differently, operating a system in a noisy environment just below but close to the
critical point 7, might be as “expensive” as operating the same system in the case A = 0 above
74, Where timing constraints will constantly be violated.

It appears to be one of the benefits of cost functions to offer some quantitative measure in this
situation. So, from figures similar to Figure 1, one can derive limits e.g. on 7 and A to operate
a CAN system with the desired reliability.

5.1 A toy example

Although the worst case analysis combined with the error model conceived by Navet & Song is
an excellent method to calculate the probabilities required in Equation (3) this estimate may
occasionally be too pessimistic. Consider the toy example in [21, p. 418] (“Mini Network”)
which serves as an example to demonstrate the functionality of the i+ME simulator NetSim.
In this example four variants of a CAN network are considered which differ with respect to
some of the configuration parameters such as transfer rate, assignment of priorities, and the
offset (relative distance of transmissions). One of the variants (Demo 2) is shown in Table 3
in a syntactical form accepted by NetSim. Table 4 displays results obtained from a worst case
analysis of all variants. Here, as a consequence of the extremely low value of deadline Dpg, none
of the configurations appears to be schedulable.

Simulation results show however that this is not true for variants 2, 3, and 4. In Figure 2,
left section (a), probability distributions of response times are shown for each of the priority
classes which demonstrate that message class B meets its deadline Dg = 500us. Even in a noisy
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Figure 1: Overall structure of cost function for PSA benchmark and standard (a) and extended
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Figure 2: Complementary response time distribution of mini network without and with noise
(left and right sections). Simulative results

environment with a resulting error rate of A\ = 20s~! the probability of missing the deadline Dp
is far below 1072 (right section (b) of Figure 2).

Finally, Figure 3 shows detailed shapes of the cost function around 7;,. The outcome of the
worst case analysis suggests that 7,;; should be lowered to approximately 1.5us in order to make
the system schedulable.

In spite of these considerations the worst case analysis together with the error model of Navet
& Song is a good method to determine probabilities required in Equation (3). The arguments
presented so far should simply clarify the point that other methods are not obsolete.

5.2 PSA benchmark

Navet & Song have illustrated their error model [24] by an example proposed by Peugeot-
Citroén Automobiles Company (“PSA benchmark”). Some of the properties of this model are
summarized in Table 5. There are some minor differences in this table compared to [24], which
are due to the fact that we adopt a divisor of 4 in Equation (5) and use in the first term of
Equation (6) the value max;epp(m) C; instead of a transmisson time corresponding to 8 data
bytes. In general, this places slightly tighter bounds on the response times.

Figure 4 shows a set of cost functions below the critical value 77, for & = 0.1, p = 0.04 (adopted
from [24]) and for A\/s™! = 0,20,40,60,80. Obviously, the values are fairly large even near
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Figure 3: Cost function of mini network configuration around critical value 77,,. Method of
subsection 4.1

Table 3: Mini network configuration for simulation

NETLIST

ND | MESSAGE NAME ID | tx/rx | RTR TXREPETITION TXOFF | RXDLY | LGTH

mode | t1/ms | t3/ms /ms /ms | /byte
2 D: OIL_.TEMPERATURE 8 tx const | 1000.0 0.000 8
2 A: OIL_PRESSURE 2 tx const 200.0 0.400 8
3 C: GEAR_INFORMATION 6 tx const | 1000.0 0.800 8
4 B: BREAK_ INFORMATION | 4 tx const 100.0 0.200 0
1 A: OIL_PRESSURE 2 rx N 100.0 8
1 D: OIL.TEMPERATURE 8 rx N 500.0 8
1 C: GEAR_INFORMATION 6 rx N 500.0 8
1 B: BREAK_INFORMATION | 4 rx N 0.5 0

Tpir = 1us, which would probably be unacceptable for practical purposes. So, special action has
to be taken to deal with this situation.

The assignment of priorities as given in Table 5 has been adopted from [24]. Tt is interesting to
compare the resulting configuration with the alternative obtained by reassigning the priorities
according to the algorithm Farliest Deadline First (EDF) as proposed by Tindell et al. [29],
[21].

Figure 5 shows cost functions for these configurations. Clearly, the dotted curves, which corre-
spond to the original configuration, are above the curves obtained when EDF is applied. This
confirms the well-known result that EDF is an optimal algorithm.

5.3 SAE benchmark

Finally, an example will be considered which is based on the control system of a prototype
electric car [27], henceforth referred to as “SAE benchmark”. A detailed discussion and analysis
of this system can be found in [15, 30], see also [21, p. 261]. For convenience, we briefly
reproduce in Table 6 a description of the network which connects a total of seven subsystems
(Vehicle Controller (V/C'), Batteries, Driver Inputs, Brakes, Transmission Control (Trans),
Inverter/Motor Controller (I/M ('), Instrument Panel Display (Ins)).

This table describes 17 priority classes containing signals 1 to 53 as defined in the SAE bench-
mark. The signals of a given class are either periodic (“P”) or sporadic (“S”). Table 6 also
corrects some minor errors in [21].

A timing analysis along the lines of [24] is shown in Table 7. For comparison, columns 1-5
reproduce results published in [21, p. 264].

For simplicity, we have set v = 0 in the following (no error bursts). Figure 6 shows the re-
sults in case of standard (a) and extended (b) CAN for a wide range of error rates A\/s™! =



Table 4: Mini network

Variant Symbolic | m Sm Tm D Im Rm kﬁn’"”) R%mw) on time?
name /bytes /ms /ms /ms /ms /ms
A 2 8 200.0 100.0 0.540 1.080 156 99.672 v
Demo 1 B 4 0 100.0 0.5 1.080 1.300 — — —
(Tbit = 4;1,5) C 6 8 1000.0 500.0 1.300 1.840 785 499.920 v
D 8 8 1000.0 500.0 1.300 1.840 785 499.920 v
A 2 8 200.0 100.0 0.270 0.540 314 99.764 v
Demo 2 B 4 0 100.0 0.5 0.540 0.650 — — —
(Tbit = QMS) C 6 8 1000.0 500.0 0.650 0.920 1576 499.916 v
D 8 8 1000.0 500.0 0.650 0.920 1576 499.916 v
B 1 0 100.0 0.5 0.540 0.760 — — —
Demo 3 A 2 8 200.0 100.0 0.760 1.300 156 99.892 v
(Tbit = 4;1,5) C 6 8 1000.0 500.0 1.300 1.840 785 499.920 v
D 8 8 1000.0 500.0 1.300 1.840 785 499.920 v
A 2 8 200.0 100.0 0.540 1.080 156 99.672 v
Demo 4 B 4 0 100.0 0.5 1.080 1.300 — — —
(Tbit = 4;1,5) C 6 8 1000.0 500.0 1.300 1.840 785 499.920 v
D 8 8 1000.0 500.0 1.300 1.840 785 499.920 v
Table 5: PSA benchmark
Thit = Bus Thit = 4us Thit = lus
m Smm T D R kgnma.r) Rgrrlna.r) R kgnma.r) Rgrrlna.r) R kgnma.r) Rgrrlna.r)
/bytes | /ms /ms /ms /ms /ms /ms /ms /ms
1 8 10.0 10.0 2.080 6 9.664 1.040 14 9.888 0.260 61 9.898
2 3 14.0 14.0 2.760 8 13.952 1.380 19 13.928 0.345 85 13.910
3 3 20.0 20.0 3.440 11 19.104 1.720 27 19.664 0.430 122 19.926
4 2 15.0 15.0 4.040 7 13.968 2.020 19 14.908 0.505 90 14.945
5 5 20.0 20.0 4.880 10 19.880 2.440 25 19.420 0.610 120 19.865
6 5 40.0 40.0 5.720 21 39.584 2.860 52 39.384 0.715 242 39.866
7 4 15.0 15.0 6.480 5 13.880 3.240 17 14.864 0.810 88 14.934
8 5 50.0 50.0 7.320 22 49.448 3.660 61 49.372 0.915 299 49.947
9 4 20.0 20.0 8.080 6 18.784 4.040 22 19.504 1.010 117 19.886
10 7 100.0 100.0 8.920 44 98.136 4.460 124 99.968 1.115 598 99.884
11 5 50.0 50.0 9.440 19 49.296 4.720 59 49.928 1.180 296 49.928
12 1 100.0 100.0 9.440 43 98.232 4.720 122 99.384 1.180 597 99.896
0, 2,10, 50,250.

Two points seem worth mentioning. Firstly, an interesting point about these plots is the follow-
ing: at 75y & 2t03us the cost function takes values which are extremely low. This shows one of
the strengths of the worst case analysis. In our model the value 1 (in some suitable unit) of the
cost function means that the system cannot be operated safely; therefore, values around 10716
guarantee that, under all practical circumstances, the system appears to be “absolutely” safe
even in a noisy environment. One might expect that the cost resulting from failures of other
electronic components will be considerably higher. So, in this special case, it would not be of
interest to apply any other method of timing analysis which might yield even lower results.
Secondly, another interesting point about Table 7 appears to be that, although messages 6, 9,
and 10 are schedulable at 7;; = 8us (transmission rate of 125 kbps), the occurence of one single
error would have the effect that all of these messages miss their deadlines. Therefore, costs
resulting from this event should be relatively large. The detailed shape of the cost function near
T4, shown in Figure 7, gives a quantitative description of this fact.

Figure 7, right section (b), also shows three curves obtained by simulation. Compared with the
results obtained from a worst-case analysis, these are substantially smaller. However, some of
the underlying modelling assumptions are not exactly the same. Further investigations will be
required to get some more insight.
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Figure 5: PSA benchmark with reassignment of priorities: original (dotted lines) and EDF

Table 6: SAE benchmark

from prio to | V/C Battery | Brakes | Trans | I/M C Tns
V/C 6P 32 12
7S 34,35 37,38 | 31 40,44,46,48,53 | 39
17P 29,30,33 | 36
Battery 1S 14

8S 23,24,25,28
12P 1,2,4,6
15P 3,5,13

Driver 3P 7
9S 15,16,17,19,20,22,26,27

Brakes 2P 8,9

118 18

13P 12
Trans 5P 11

14P 10

16P 21
/M C 4P | 43, 49

108 41,45,47,50,51,52
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Figure 7: Cost function for SAE benchmark with standard CAN around critical value of 7.
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Table 7: SAE benchmark

Thit = Bus Thit = 4us Thit = lus
m Smm T D R kgnma.r) Rgrrlna.r) R kgnma.r) Rgrrlna.r) R kgnma.r) Rgrrlna.r)
/bytes /ms /ms /ms /ms /ms /ms /ms /ms
1 1 50.0 5.0 1.440 5 4.960 0.720 12 4.944 0.180 54 4.932
2 2 5.0 5.0 2.040 3 4.392 1.020 10 4.940 0.255 48 4.959
3 1 5.0 5.0 2.560 3 4.912 1.280 9 4.808 0.320 47 4.926
4 2 5.0 5.0 3.160 2 4.728 1.580 8 4.716 0.395 46 4.903
5 1 5.0 5.0 3.680 1 4.464 1.840 8 4.976 0.460 46 4.968
6 2 5.0 5.0 4.280 0 4.280 2.140 7 4.884 0.535 45 4.945
7 6 10.0 10.0 5.040 1 8.984 2.520 10 9.460 0.630 65 9.955
8 1 10.0 10.0 8.400 1 9.504 2.780 10 9.720 0.695 64 9.882
9 2 10.0 10.0 9.000 0 9.000 3.080 9 9.468 0.770 64 9.957
10 3 10.0 10.0 9.680 0 9.680 3.420 9 9.808 0.855 63 9.904
11 1 50.0 20.0 10.200 1 19.704 3.680 19 19.788 0.920 128 19.989
12 4 100.0 100.0 19.280 11 99.664 4.020 101 99.512 1.005 645 99.950
13 1 100.0 100.0 19.800 10 99.080 4.280 101 99.772 1.070 644 99.877
14 1 100.0 100.0 20.320 10 99.600 4.540 100 99.480 1.135 644 99.942
15 3 1000.0 1000.0 29.240 108 999.232 4.800 1014 999.728 1.200 6449 999.962
16 1 1000.0 1000.0 29.760 108 999.752 5.060 1014 999.988 1.265 6448 999.889
17 1 1000.0 1000.0 29.760 108 999.752 5.060 1014 999.988 1.265 6448 999.889




6 Conclusions

The present paper introduces a qualtity measure of timeliness of real time systems and discusses
some applications to CAN based systems. The technical problem to deal with consists in de-
termining probability distributions of response times. We report on several methods and apply
these to various configurations, which have been described in the literature.

Many questions have not yet been answered. It would be important to look more closely at some
points such as an application of rare event simulation, more sophisticated analytical queueing
models, and a refined implementation of numerical Lapace inversion techniques.

To a large extent, the interest in this work relies on the fact that all of the methods considered
here could as well be applied to systems other than CAN.
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