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In many application areas of distributed systems based on serial busses like CAN high 
safety and reliability are considered as major functional requirements. In addition, the 
communication system has to cope with periodic as well as event-driven messages, 
which have to be transferred under hard real-time constraints. Especially where a 
considerable amount of event-driven data occurs, a flexible event-oriented scheduling 
strategy has to be preferred. But, event-oriented data processing and  communication 
demand enhanced fault tolerance techniques. This article introduces a distributed 
system concept based on a redundant CAN architecture, which is able to meet the 
above requirements. Beside hardware replication, extensive fault tolerance protocol 
enhancements are provided, comprising fault detection, notification, handling and 
recovery. 
 
 
1 Introduction 
 
Important technical requirements modern 
distributed computer control systems are 
subject to are: 
 
• Deterministic real-time behavior; 
• High reliability/safety. 
 
The real-time and performance demands 
can be met by the use of  an appropriate 
communication protocol, i.e. a bus access 
mechanism suitable for the characteristic 
of data occurrence. Most often, low level 
control systems are characterized by 
predominantly periodic data occurrence, 
since control services demand the 
predetermined, constant exchange of 
sensor and actuator data. In addition, 
sporadically occurring data such as 
process state changes, process alarms, 
and component faults have to be 
regarded, too. Due to their importance 
concerning system reliability and safety, 
the real-time constraints of event-driven 
information are high. 
 
Highly reliable communication protocols 
and architectures often make use of 
periodic bus access strategies, such as 

time-slice [3], token, or polling methods 
which from the performance viewpoint are 
very efficient  transferring periodically 
occurring data. But, periodic 
communication protocols have to reserve 
bandwidth of the bus medium in order to 
transmit spontaneous messages with 
minimum delay. In case the amount of 
sporadic data exceeds a specific limit, 
periodic access strategies are not 
appropriate since the average access 
delays increase due to the required 
amount of reserved bandwidth. As a 
result, real-time operation cannot be 
guaranteed. Especially regarding large-
scale networks, bandwidth is limited 
because a lot of nodes have to be 
regarded in the pre-calculated schedule. 
Here, an event-triggered multi-master 
protocol like CAN seems to be the best 
choice. Event-driven protocols provide 
very low bus access delays on the 
average, unless the busload exceeds a 
maximum value. However, determinism of 
bus access is limited, because in case 
several nodes try to occupy the bus at the 
same time the access delays cannot be 
determined exactly. The priority controlled 
bus access technique of CAN allows the 
pre-calculation of worst-case transmission 



times for all messages [4]. Thus, the real-
time behavior of CAN is suitable for many 
applications. 
 
High reliability and safety of 
communication require comprehensive 
features concerning fault tolerance, 
comprising hardware redundancy and 
software for redundancy management. 
Since current protocols do not provide 
sufficient fault tolerance features, protocol 
and architectural enhancements are 
necessary. Designing a fault-tolerant 
system, a basic goal is to avoid the 
negative influence of many fault tolerance 
methods on the real-time behavior. Thus, 
measures have to be developed, ensuring 
highly reliable communication without 
restricting system performance.  
 
 
2 Fault Tolerance Issues 
 
Highly dependable system aspects has 
gone unnoticed so far in many 
applications. It can be realized by fault-
tolerant system design including hardware 
redundancy and mechanisms to manage 
fault handling. Fault tolerance means that 
the functioning of the entire system is to 
be maintained despite faulty components, 
i.e. single points of failure must be 
avoided. Distributed systems deal with the 
multiplication and distribution of 
information to locally separated function 
modules. Multiplication and distribution 
must take place consistently, i.e. an item 
of source information must be present at 
the receivers in an identical state within a 
specific time. Inconsistencies of the 
distributed databases caused by faulty 
components can lead to a severe 
malfunction of the entire system. In 
conjunction with consistency, fault 
tolerance signifies that even when a fault 
occurs data consistency is to be preserved 
or restored before the propagation of faults 
affects the overall system function.  
 
Inconsistencies can be avoided or at least 
detected  through the use  of a sufficient 
protocol strategy. An event-oriented 
systems, as opposed to periodic protocols,  
require an acknowledgment mechanism in 
order to detect a message loss. With 
respect to the acknowledgment process, 

the degree of reliability increases with the 
number of confirming receivers. The 
maximum possible reliability of the 
transmission of data is obtained with the 
atomic broadcast principle: a message is 
either correctly received by all of the 
operationally capable network nodes or it 
is received by none of them. The CAN 
transmission strategy provides a very 
effective atomic broadcast method. Here, 
in the fault-free case the bandwidth of the 
communication medium is not loaded by 
any acknowledgment traffic. Instead, in 
case of a fault the faulty message is 
destroyed by the detecting node during the 
transmission. As a consequence, all nodes 
discard the faulty message and thus, data 
consistency is assured. If inconsistencies 
cannot be avoided it is necessary to detect 
them with a high probability (high error 
coverage), and with a minimal delay (low 
error latency) in order to be able to start 
fault tolerance measures.  
 
Fault-tolerant system design requires the 
identification of all potential failure modes 
and their impact on the system services. 
Furthermore, a fault model has to be 
established, describing the faults which 
are to be covered by the fault tolerance 
mechanisms. Regarding a communication 
system based on a serial bus such as 
CAN, faults can be classified as follows: 
 
• Global faults lead to a breakdown of the 

system-wide communication. This 
causes the crash of the overall system 
function. Sample global faults are: 

  
− Short failures of the 

transmission line, 
− Open failures of the 

transmission line (interruption of 
a bus wire), 

− Short failures at a bus-side 
output of a network node, 

− Bubbling idiot failures, i.e. a 
deadlock of the bus due to a 
permanently transmitting node. 

 
• Local faults are limited to malfunctions 

of node components, leading to a 
separation of the erroneous node, but 
do not influence overall system 
communication seriously. 

 



Additionally, faults can be classified as 
temporary and permanent, respectively. 
 
Component faults are to be tolerated 
through the use of redundancy in order to 
avoid a single point of failure leading to a 
breakdown of the entire system. For 
example, bus redundancy has to be 
provided for in order to maintain overall 
communication in spite of a faulty 
transmission channel. However, 
redundancy has to be managed in an 
efficient and suitable way, comprising 
different stages: 
 
• Fault detection 
• Fault separation (to avoid impairment of 

the system operation by an erroneous 
component) 

• Fault notification (to all of the network 
nodes) 

• Redundancy switch-over (i.e. 
replacement of an erroneous 
component by an operational replica) 

• Recovery of a consistent system state 
 
The primary goal of fault-tolerant system 
design is that in case of a fault redundancy 
handling takes place without any loss, 
corruption, and duplication of messages. 
In other words, data consistency has to be 
maintained even in the case of component 
faults without exceeding the timing 
constraints. The consequence is that the 
delays of all fault management stages 
have to be bounded and minimized. 
 
Concerning node loss detection, some 
CAN layer 7 protocols use so-called life-
guarding methods. Life guarding is used to 
refer to the cyclical transmission of life 
messages by all of the operational nodes 
to a master node. If a life message of a 
node does not occur, that indicates a 
component fault within that node. 
Depending on the cycle time of the life 
messages, an unacceptably long time may 
pass until the node failure is detected so 
that a loss of messages occurs leading to 
inconsistencies. In contrast, time-driven 
protocols most often use time-out 
mechanisms to detect a node loss  leading 
to unallowable fault latencies, too. After 

the detection of errors all the other 
network nodes have to be informed within 
a minimum period of time. Otherwise, lost, 
corrupted, or duplicated messages cause 
further inconsistencies demanding 
comprehensive recovery operations. Thus,  
rapid error detection and notification 
mechanisms minimize the design effort for 
recovery measures and reduce fault 
tolerance latencies. 
 
Fault tolerance comprises the separation 
of erroneous components in order to avoid 
the propagation of the fault to other 
system components. For example, a node 
which blockades the communication 
channel permanently by a short-circuit at a 
bus-side output has to be disconnected. 
Concerning distributed systems, the 
prevention of error propagation is often 
realized through the use of the fail-silent 
strategy. A fail-silent node is either 
operational as intended or do not produce 
any results at all. 
 
Regarding event-triggered protocols, due 
to high error detection and notification 
latencies, the fail-silent strategy is not 
sufficient. Therefore, an active error 
mechanism has to be provided for 
detecting and indicating a component fault 
with a minimal delay.  A fault-active node 
is able to detect and notify a local fault 
autonomously.  
 
 
3 A Fault-Tolerant CAN Architecture 
 
A standard CAN system is able to tolerate 
a subset of the mentioned fault modes. 
For example, CAN ensures the 
continuation of system operation in case of 
transient global faults, such as message 
violation caused by EMI by the use of 
message repetition, as well as of 
permanent local fault (e.g. node losses)  
by switching off the faulty node. In 
contrast, permanent global faults lead to a 
system breakdown. These faults can only 
be tolerated by the use of replicated 
components. But, the redundant 
realization of system components, in  
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Figure 1: Atomic Actions in CAN and FTCA  
 
 
 
particular of the bus line, requires 
additional mechanisms for fault detection, 
notification and the  consistent changeover 
to the replicated components in order to 
avoid the violation of the real-time 
constraints and of data consistency. CAN 
does not provide techniques for 
redundancy management. Moreover, the 
negative confirmation strategy of CAN 
data transmission causes high error 
latencies in case of a node loss: the 
transmitter of a message does not detect 
the total outage of a network node but 
rather assumes that if error frames do not 
occur all of the receivers have received its 
message without faults. Thus, additional 
detection mechanisms have to be 
designed. Especially the lack of 
redundancy management of CAN and the 
lack of an efficient node loss detection 
gave the motivation for the fault-tolerant 
CAN architecture (FTCA). Our system 
concept provides the following features: 
 
• Redundancy of bus line and node links 

• Fault tolerance management by an 
active fault handling strategy (fault-
active nodes), providing low fault 
latencies 

• Enhanced fault detection capabilities 
(high fault detection coverage) 

 
The major objectives and prerequisites of 
FTCA are: 
 
• to keep the consistency of data in the 

case of a single fault (including 
common-mode failures) without 
violating the timing constraints 

− minimize fault management 
latencies 

− maximize fault coverage 
• to satisfy an extensive fault model in 

order to tolerate all local and global 
faults; 

• to minimize hardware costs (a lot of 
techniques, such as majority voting 
based on n-of-m structures are 
unsuitable from the economic point of 
view); 



• to use off-the-shelf components; 
• to minimize software complexity in 

order to prevent the software 
enhancements from inducing new fault 
sources; 

 
In order to meet the consistency and real-
time constraints in the case of a 
component fault, the fault management 
process has to be integrated into the 
atomic action strategy of CAN data 
transmission. That means, the fault 
management stages in the case of a 
global fault resulting in a bus switch-over 
have to be finished until a message loss 
violates data consistency. Only when all 
messages transmitted during the fault 
management process are rejected by the 
operational nodes, the fault tolerance 
process can be regarded as an atomic 
action like a standard CAN transmission 
(Fig. 1).  
 
3.1 Spacial Redundancy 
 
As to be seen in the Fig. 2, a distributed 
communication system using the proposed 
fault tolerance concept comprises fault-
tolerant communication nodes. A node 
provides two fully redundant bus links, 
each link comprising a micro-controller 
(MC), a CAN communication controller 
(CAN), and a transceiver (TC). 
 
 
 

Figure 2: FTCA Communication Node 
 
 
3.2 Fail-Active Fault Handling 
 
The fault-active mechanism allows each 
communication link to be monitored by the 
other link of its node. For this purpose 

each micro-controller  serves as a 
watchdog processor for the other link. In 
addition, in case of a component fault a 
node is able to become active 
autonomously, i.e. it informs all network 
nodes about  the fault by transmitting a  
notification message through the 
operational link and communication 
channel. Thus, the second bus system 
fulfills the function of a watchdog bus. 
During normal operation the entire process 
data traffic is executed through one 
communication channel. 
 
A sample fault reaction process due to the 
occurrence of a fault of  CAN controller a1, 
takes place as follows: CAN controller a1 
disrupts all network traffic on bus 1 by 
sending error frames until its error counter 
reaches 128; reaching the error counter 
value 96 CAN controller a1 transmits an 
error interrupt to micro-controller a1; 
micro-controller a1 informs micro-
controller a2 of the loss of the CAN 
controller;   micro-controller a2 starts the 
transmission of an error notification 
message through bus 2; all of the network 
nodes receive the error message through 
the links 2; all nodes switch off bus 1 and 
continue the transmission of process data 
through bus 2. The advantage of this 
method lies in the fact that the fault 
tolerance process is executed while the 
faulty CAN controller is in the active error 
state (error counter 127). This controller 
therefore continuously destroys the 
message which is detected as being faulty 
up to the switch-over process. As a result, 
no message is lost and no faulty message 
is processed until the bus switch-over has 
finished. Regarding redundant systems, 
message losses may occur because the 
faulty node is not able  to receive any 
message until it is replaced by its replica 
component. Lost messages have to be 
retransmitted through the use of time-
consuming recovery processes. Regarding 
the proposed concept, in case of a CAN 
controller fault no message loss occurs. 
But, specific malfunctions of a micro-
controller may cause the loss of 
messages. This situation can occur, for 
example, if the fault detection latency is 
greater than the duration of the 
transmission of a message. Nevertheless,  
 



 
 Fault Detection Fault Separation Fault Notification Fault Handling Fault Recovery 
CAN 
(Layer 1+2) 

CRC, form, stuff, 
bit, acknowledge 
error 

Error-passive 
mode, 
Bus-off mode 

local fault detection  message 
repetition, 
error counter 
decrement 

FTCA Watchdog 
processor, 
enhanced 
reception and 
transmission 
monitoring  

Bus and link 
switch-off 

Watchdog bus 
notification 

bus and link 
replica switch-
over 

message 
repetition 

Table 1: CAN and FTCA Fault Tolerance Techniques 
 
only a few messages are to be 
retransmitted causing a minimal recovery 
effort. Thus, the preconditions of 
maintaining the consistency of data in the 
case of a fault are fulfilled. Table 1 gives a 
summary of the fault tolerance techniques 
of a FTCA system compared to the basic 
CAN protocol [1] features. 
 
3.3 Enhanced Error Detection 
 
Concerning the micro-controller and the 
CAN chip, there are a few malfunctions, 
which can be detected neither by the CAN 
error detection mechanism nor by 
watchdog mechanism, especially in an 
adequate amount of time. Enhancing the 
monitoring ability of  a watchdog-CPU 
allows both the detection of omission 
faults of a transmitter and the detection of 
reception faults immediately. In the 
following, two methods are introduced 
improving  fault detection capabilities, 
such that error latencies are reduced and 
fault coverage is increased.  
 
 

Transmission Monitoring 
 
The method to be introduced provides the 
monitoring of each sending process of a 
bus link by the watchdog-processor of its 
neighbor link. This takes place as follows: 
When a node has to transmit a process 
message, both micro-controllers of this 
node get informed about this task. While 
the micro-controller of the process link 
performs the transmission, the watchdog 
micro-controller is waiting for a signal of 
the process micro-controller indicating the 
successful  transmission completion. As a 
result, in the fault-free case, a watchdog-

processor gets a confirmation of each 
successful sending process. In case the 
confirmation does not arrive, a 
transmission loss, caused by a faulty 
sending component, is assumed. The 
watchdog processor may start a fault 
recovery process by transmitting the lost 
message through bus a. Thus, fault 
latency is minimized, such that a message 
loss is detected and re-transmitted at 
once. 
 

Reception Monitoring 
 
The total outage of a link component may 
cause the omission of messages. 
Message omissions have to be detected in 
time in order to start the fault tolerance 
mechanisms immediately. The following 
method provides a mechanism in which 
faults can be detected at the point of their 
occurrence: 
 
• A master node transmits a low priority 

test message permanently; 
• Receiving a test message, the CAN-

Controller of each network node sends 
a reception interrupt to its micro-
controller; 

• The process micro-controller informs 
the watchdog-processor of the node 
about the reception of the test 
message. 

 
Thus, a watchdog-processor gets 
reception interrupts periodically; caused 
either by test or process messages. In 
case a reception confirmation does not 
occur, a faulty receiver component is 
assumed. Now, the watchdog-processor 
starts the fault tolerance process by 
transmitting a fault notification message 



through the watchdog bus, as mentioned 
above. Using this method, the bus is 
occupied permanently by process and test 
messages, respectively. Due to higher 
priorities, the process messages win the 
arbitration against the test messages. But, 
the medium access delays for process 
data increases slightly, since a node trying 
to transmit a process message has to wait 
until a test message just being transmitted 
has finished. In addition, the load of the 
link components increases due to the 
permanent reception processing. In order 
to reduce this load, the frequency of test 
message transmission may be reduced. 
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