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CAN networks are becoming one of the most used industrial local area network in 
many applications. Philips Semiconductors has been one of the manufacturers 
devoted to offer stand alone CAN controllers to make possible the connection to this 
network. The PCA82C200 has been used in multitude of CAN based microcontroller 
systems. At present, this circuit has been replaced by the SJA1000. This new 
controller offers new interesting features. An analysis of this new CAN controller, and 
its comparison with its antecedent is done in this paper. We use different methods, as 
simulation languages and queuing networks, in order to obtain the main performance 
parameters of these controllers. 
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Introduction 

CAN (Controller area network) networks 
are becoming one of the most used 
industrial local area network in many 
applications. Beyond its original use, in 
automotive environments, this network 
can be found nowadays in many industrial 
applications, as the base of distributed 
industrial control systems, in agricultural 
or medical systems, and many other 
examples that need an industrial local 
area network (fieldbus).  
 
From the origins of this network, Philips 
Semiconductors has been one of the 
manufacturers devoted to offer integrated 
circuits to make possible the connection to 
this network. This manufacturer has 
developed, in addition to different 
microcontrollers with on-chip CAN 
controllers specific circuits, known as 
stand alone CAN controllers, in order to 
provide a simple interconnection to CAN 
for different microcontrollers. 
 
The PCA82C200 ([6]) has been used in a 
plethora of CAN based microcontroller 
systems. It is easily connected to both 
Intel-like and Motorola-like 
microcontrollers. At present, this circuit 
has been substituted by the SJA1000 

([1]). This new CAN controller offers new 
interesting features. 
 
An analysis of this new CAN controller, 
and its comparison with its antecedent, is 
done in this paper. What does this circuit 
provide? Which is its effect on the system 
performance? Has some features that 
makes it more suitable in real-time 
systems? These questions are going to be 
answered in this article. 
 
In order to do a performance analysis we 
can use different techniques. We can 
obtain the results using a real system 
(prototype) using these controllers. So, 
with the aid of a monitorization system, we 
can measure different factors: bus 
utilization, throughput, response time, etc.  
and do the comparison between these  
controllers. The drawback of this 
technique resides in the development of 
the monitorization system. To avoid the 
use of prototypes and the development of 
measurement systems we can do the 
study using simulation and analytic 
methods. Simulation languages and 
queuing network theory are valid methods 
in order to compare and to analyse 
systems. 
 



 

This paper is organized as follows: after 
the introduction an analysis of the most 
important characteristics of both devices is 
carried out. In the third section simulation 
models accomplished are commented 
and, in the last sections the obtained 
results and conclusions are presented. 

PCA82C200 and SJA1000 characteristics 

In this section the characteristics that 
differentiate both circuits are going to be 
presented. As cited previously, the last 
one is the successor that Philips 
Semiconductors offers to its widely used 
PCA82C200. Since the objective of this 
paper is to analyze how the new 
improvements introduced in the SJA1000 
affect the system performance only those 
with have a clear effect in the performance 
are emphasized. 
 
PCA82C200, due to its low cost and its 
easy connection with different 
microcontrollers has become one of the 
most used CAN controllers in 
microcontroller based systems. 
Nevertheless, the continuous 
development of both microcontrollers and 
the improvements emerged to the original 
CAN standard, has made necessary its 
replacement. Specifically, the 82C200 is 
only prepared for basic CAN and it is CAN 
2.0B passive. Furthermore, the 
development of microcontrollers, the 
constant increase in its work frequency 
implies that PCA82C200 can not be 
connected due to its read/write access 
time to the last microcontrollers. For 
example, PCA82C200 runs without 
problems with the Intel 8031 family with 
frequencies up to 16 Mhz. If we want to 
use new, faster microcontrollers, only 
those that permit to insert wait states (and 
therefore loosing performance) can be 
used. 
 
This last characteristic is one of the 
improvements of the SJA1000: access 
time, reading and writing, setup, hold and 
pulse width of control signals are now 
much shorter. It makes possible its direct 
connection to the last microcontrollers of 
several manufacturers (think about Intel 

251 family, Philips 8051XA, Siemens 166 
family, etc.) 
 
Both devices are exactly equal with 
respect to their package, making possible 
the direct replacement of the PCA82C200 
with the SJA1000. Furthermore, to allow 
its use on already designed systems 
based on the PCA82C200 functionality, 
SJA1000 provides a compatible operation 
mode with the previous one. 

Reception buffer 

One of the improvements provided by the 
SJA1000 is an enhanced reception buffer. 
While the PCA82C200 only has a two 
message reception buffers, in the 
SJA1000 this capacity has been increased 
until 64 bytes. Depending on the length 
and type of the message (extended or 
basic CAN) it will be able to store several 
messages (more than two). This feature, 
which does not influence on the 
application developed, is claimed to be an 
important advantage due to the smaller 
probability of overrun errors. Later, in this 
paper, the number of lost messages due 
to overrun errors is going to be studied for 
each of these devices. 

PeliCAN mode 

In addition to the compatible mode, 
SJA1000 offers a new mode known as 
PeliCAN. Main new features are ([1]): 
 

• Reception and transmission of 
standard and extended frame format 
messages 
• Receive FIFO (64 bytes) (also in 
compatible mode) 
• Single/Dual acceptance filter with 
mask and code register for standard 
and extended frame. 
• Error counters with read/write 
access 
• Programmable error warning limit 
• Last error code register 
• Error interrupt for each CAN Bus 
error 
• Arbitration lost interrupt with detailed 
bit position 
• Single-shot transmission (no re-
transmission on error or arbitration lost) 



 

• Listen only mode (monitoring of the 
CAN bus, no acknowledge, no error 
flags) 
• Hot plugging supported 
(disturbance-free software driven bit 
rate detection) 
• Disable CLK OUT by hardware 

 
From these characteristics, the enhanced 
reception buffer and the new single-shot 
are the improvements that can affect the 
system performance. So, with single-shot 
mode, if a message has not been able to 
transmit correctly due to: 
 
• arbitration loose 
• bus errors[2]: 

• bit errors 
• bit stuff errors 
• CRC errors 
• form errors 
• acknowledge errors 
• overload errors 
• overload frame form errors 
• inconsistent overload errors 
• multiple consecutive errors 
• multiple successive error 

 
it is not re-transmitted. In this case an 
interrupt is generated and the buffer is 
released. 
 
If single shot mode does not exist (e.g. 
PCA82C200), the message that is not 
correctly transmitted is automatically re-
transmitted. This implies that, depending 
on the message priority, it will compete in 
the next arbitration phase with the rest of 
the messages of the other nodes and it 
will delay other messages in the same 
node. In real-time systems this fact implies 
that worst case messages response time 
is unbounded. 
 
With single shot mode, the message that 
can not correctly arrive is lost (in many 
applications it is “better not to arrive than 
to arrive late” since the passage of time 
may invalidate the information of the 
message [10]) (of course, application level 
can re-transmit that message if needed). 
We are going to assume in the rest of the 
paper that a message that suffers from 
some error is not re-transmitted. In this 

way, the response time for the other 
messages will not be altered due to an 
error in one of them. (We are analysing 
only the circuit, not other software levels 
such as the application level of the 
communication that can alter this 
operation) 

Simulation models 

In order to compare the different 
behaviors of both CAN controllers, the 
transmission and the reception will be 
studied separately.  

Transmission 

From the transmission point of view, the 
features to evaluate will be: 

 
• The response time of the messages: 

the time since the message is ready to 
access the bus until it reaches to its 
destination. The aim of this comparison 
is to check whether this time remains 
constant or if it increases as the 
number of errors increase. So, the 
response time of each of the messages 
proposed in the SAE benchmark [9] will 
be obtained.  

 
• Bus utilization: the relationship between 

the total busy time and the time 
employed in data transmissions (both 
the ones which arrive successfully and 
the transmissions which suffer from 
some error). 

 
• The number of lost messages: this 

value will inform us about the number 
of messages that have not been 
correctly received due to some kind of 
error. 

 
• The number of messages that miss 

their deadline: the number of messages 
that have been received but have not 
met their temporal constraints. 

 
We used the SMPL [4] simulation 
language to develop the simulation model. 
The first step was to implement the model 
of the CAN bus behavior, then, we 
introduced a fault rate. This fault rate will 



 

be modified in order to study how the 
parameters evolve. 
 
The objective of this model is to compare 
the value of the previously cited 
parameters according to the use of the 
single shot mode (SJA1000) or the normal 
operation of the PCA82C200.  
 
The simulation model used the SAE 
benchmark [9] as workload. This 
benchmark describes the set of messages 
used in an electrical car prototype 
composed of seven subsystems: the 
batteries, the vehicle controller, the 
inverter/motor controller, the instrument 
panel display, driver inputs, brakes and 
the transmission control. The network 
connecting these seven subsystems is 
required to handle a total of 53 messages, 
both sporadic and periodic signals. A 
periodic message has a fixed period, and 
requires the latency to be less than or 
equal to this period. Sporadic messages 
have latency requirements imposed by the 
application. There is some unspecified 
behavior in the benchmark: the maximum 
rate at which sporadic messages can 
occur as well as the queuing jitter values. 
In this study, the same values as in Tindell 
et al. [7] will be assumed, and, in order to 
reduce the bus utilization, piggybacking 
for all the messages sent from the same 
source will be employed. For sporadic 
signals the approach is to send a server 
message periodically (when the server 
message has to be sent, the sender task 
polls for the occurred signals and fills the 
contents of the message). 

Reception 

The main objective in this point is to 
compare the number of overruns in the 
two CAN controllers. The 64 bytes 
reception buffer of the new CAN controller 
(SJA1000) should be responsible of an 
important decrease of this number. 
 
When there is no place in the reception 
buffer to allocate a new message an 
overrun error is produced. There is 
certainly a little improvement in the new 
CAN controller: in the PCA82C200 the 
overrun error is activated when there is no 

place to allocate the new message, just 
after it has successfully passed the 
acceptance test, while in the SJA1000 this 
error is activated when a correctly arrived 
message has no place in the reception 
buffer. So, a message that does not fit in 
the reception buffer but suffers from some 
kind of bus error does not cause an 
overrun error. 

 
An important aspect to take into account if 
we want to know when an overrun error 
will be produced is the time the 
microcontroller needs to release the 
reception buffer. Depending on the 
microcontroller, its clocks frequency, and 
its application (the number of interrupts it 
has to attend,...), different performance 
can be obtained. 
 
When a new message arrives, the CAN 
controller generates an interrupt to the 
microcontroller. After the interrupt latency 
time, the microcontroller executes the 
interrupt handler that gets the message 
from the CAN controller and usually stores 
it in its memory in order to process it 
afterwards. Therefore, the number of 
overrun errors depends on the time the 
microcontroller takes to remove the 
message. 
 
To compare both CAN controllers we use 
an 8031 microcontroller from Intel that 
usually operates at 12 or 16 Mhz. As 
previously exposed, there are several 
microcontrollers of this family, from 
different manufacturers, which operate at 
higher frequency but the PCA82C200 
does not grant its time requirements. Only 
microcontrollers that are able to insert wait 
states in the access to the CAN controller 
could be employed if we want to operate 
at higher frequencies. It also supposes a 
greater cost. It would be possible, for 
example, to connect the PCA82C200 with 
the new 251 Intel microcontroller, the 
successor of the 8031, but this implies 
that one wait state has to be added. As 
the aim of our study is to test the 
functionality of the 64 bytes reception 
buffer of the new SJA1000, we will base 
our models on the standard 8031 at 16 
Mhz even though some comments about 
the 251 will be made.  



 

 
In this sense, if we will know how much 
time the 8031 microcontroller will need to 
remove the message from the CAN 
controller, the next equation (obtained 
from a real system developed by the 
authors) could be used: 
((112+5L)/Mhz)*12 µs, where L is the 
number of bytes of the message and Mhz 
the crystal frequency of the 
microcontroller. This equation could be 
different depending on the specific 
implementation, the optimizations of the 
employed compiler, or if we program in 
assembler or a high level language. If we 
employ the 251 microcontroller, to access 
the CAN controller one wait state has to 
be added. So, the following equation has 
to be employed: ((211+10L)/Mhz)*2 µs. 
 
With these ideas, a simulation model has 
been developed. In this case we used the 
QNAP2 (Queuing Network Analysis 
Package) [5] language to implement the 
model, and the parameters modified were 
the message arrival rate and the message 
length (from 1 to 8 data bytes). First, we 
modeled a general environment with the 
arrival of messages of different lengths at 
the highest frequency allowed in CAN. 
This model was later modified to obtain a 
bound of the worst performance (the 
highest overrun probability): the reception 
of messages of 0 data bytes, without stuff 
bits, at the highest frequency (one 
message each 47 µs) and at the highest 
CAN transmission speed (1 Mbaud). 
Another of the studied aspects was the 
performance of both CAN controllers in 
the presence of message bursts. In this 
case we modified the model to study 
different burst intervals, number of 
messages per burst and size of the 
messages. We obtained an estimation of 
the suitable message burst intervals from 
the SAE benchmark. To compare the 
message reception in both CAN 
controllers we used the overrun 
probability, i.e., the probability to discard a 
new message due to the lack of space in 
the reception buffer. 

Results 

Transmission 

From the transmission point of view, the 
message response time and bus 
utilization changes are analyzed. In Figure 
1 the response time of message 9 from 
the standard SAE benchmark can be 
seen. While in the PCA82C200 (200-Msg 
9) this time increases when a different 
error occurs, in the SJA1000 the response 
time remains constant. So, with the new 
CAN controller the time the system needs 
to send successfully a message can be 
bounded. This is very important in real-
time environments. 

Response time for message 9
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Figure 1: Response time of message 9 
 
In the developed simulations, a 
transmission speed of 125 Kbaud was 
used. At this transmission speed we 
obtained a 85% bus utilization [7,8]. These 
circumstances (very high bus traffic) can 
help us to study how the previously 
commented parameters evolve depending 
on the CAN controller we use. 
 
In Figure 2 another interesting aspect can 
be observed: when the error rate is too 
high, e.g. faults with an exponential 
distribution of 20 ms as average or lower, 
it is possible that the response time with 
the SJA1000 not only remains constant 
but also decreases. For example, in 
Figure 2 the response time decreases 
only a little when the fault rate is not very 
high, but when it increases (20 ms 
between two faults), the response time 
significantly decreases. 
 



 

Response time for message 5
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 Figure 2: Response time of message 5 
 

In the SJA1000 when an error occurs 
while a message is being transmitted, it is 
automatically discarded (even though it 
has not been completely sent since errors 
can appear during the transmission of the 
first bits of the message). So, bus 
utilization can decrease and messages 
response time can also be slightly 
improved. The results of the PCA82C200 
show the same behavior as the one earlier 
observed in Figure 1: the response time 
notably increases. 
 
In Figure 3 a similar behavior can be 
observed. In this figure the bus utilization 
changes as the fault rate increases can be 
seen. 
 
Just like the response time, in the 
PCA82C200 the bus utilization increases 
as the fault rate does (due to the message 
retransmissions and the transmission of 
error frames) while in the SJA1000 it 
remains constant and even decreases 
when the fault rate increases. 
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Figure 3: Bus utilization 

 
But there are not only advantages. In 
Figure 4, the number of messages that 
have not been sent can be observed, i.e. 
messages that suffered from some error 
and therefore not successfully arrived, in 
the SJA1000 are relatively high. 
Nevertheless, in the worst case the 
number of lost messages does not exceed 
the 2.8%.  
 
Depending on the application goal to 
develop it could be more interesting to 
bound the response time even loosing 
some messages, or to send all the 
messages increasing the response time 
(and therefore missing some deadlines). 
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Figure 4: Lost messages 
 

Missed deadlines
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Figure 5: Missed deadlines  
 

Figure 5 shows the number of missed 
deadlines. In the SJA1000 the number of 
correctly received messages that miss 
their deadlines is lower than in the 
PCA82C200. 



 

Reception 

First the behavior of the two CAN 
controllers in the worst case will be 
studied, the reception of 0 data bytes 
messages (without stuff bits) at the 
highest possible frequency. The 
transmission speed will be modified from 
500 Kbps (1 bit transmission time = 2 µs) 
to 1 Mbps (1 bit transmission time = 1 µs). 
In Figure 6 the obtained overrun 
probability with the CAN controllers 
connected to the 8031 microcontroller at 
16 Mhz can be seen. This probability is 
similar in both CAN controllers with only a 
little improvement in the SJA1000. This is 
due to the fact that the arrival rate 
exceeds the reception slot empty time. 

Figure 6: Bound of the worst performance 
 

For the 251 microcontroller (at 16 Mhz) no 
overrun probability was obtained for both 
CAN controller at any transmission speed.  
 
Then the previous models were modified 
to use a mix of messages of different 
sizes (from 0 to 8 data bytes) as workload. 
The messages were again sent at the 
maximum frequency. The results obtained 
with the 8031 microcontroller can be seen 
in Figure 7. 

 

Figure 7: Overrun probability with a mix of 
messages. 

 
With this workload only a very little 
improvement was obtained when the 
SJA1000 was used. Using the 251 
microcontroller no difference could be 
appreciated since with both CAN 
controllers no overrun occurred. 
 
Finally, the reception of burst of messages 
varying the time between two bursts, the 
number of messages in a burst and the 
size of the messages was modeled. In 
Figure 8 the results for the PCA82C200 
connected to an 8031 (16 Mhz) receiving 
1 data byte message bursts with a 
frequency of one burst each 5 ms. can be 
seen. The variation of the burst interval 
(10, 50, 100 ms) did not add any 
additional information to the study since 
the reception slot empty time is lower than 
the burst interval. 

Figure 8: Overrun probability in the 
PCA82C200 under bursts of messages. 

 
The probability of overrun increases as 
the number of messages in each burst 
increases. Similar results were obtained 
when the size of the messages was 
modified. With identical workload no 
overrun occurred with the SJA1000. 
 
A better performance can be obtained for 
both CAN controllers employing the 251 
microcontroller (16 Mhz) since there was 
no overrun.  

Conclusions 

In this paper, performance variation has 
been analysed depending on using the 



 

PCA82C200 or the SJA1000 CAN 
controller in microcontroller systems. This 
study has attended to the circuit only, so it 
does not assume anything about the 
application level. In this way, it can be 
concluded that the new circuit provides, in 
terms of transmission, the possibility of 
preventing the increase of messages 
response time due to errors appearance, 
meaningful fact in terms of real-time 
systems. 
 
On the other hand, in terms of reception, 
the addition in the new circuit of an 
enhanced buffer minimises significantly 
the number of lost messages due to 
overrun errors when burst of messages 
occurs. These bursts of messages are 
quite common in control applications. 
These conclusions are valid for the 8031, 
since in case of working with 251-like 
microcontrollers there are not significantly 
differences. This is due to the fact that in 
the 251 the time necessary to empty the 
reception slot is considerably lower than in 
the 8031. 
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