
MiniCAN - a low-cost concept to integrate
sensors and actuators into CAN networks

Martin Trautmann, Hans Strack
Technical University of Darmstadt

Institute of Solid State Circuits
Schloßgartenstraße 8, D-64289 Darmstadt, Germany

traut@iht.e-technik.th-darmstadt.de

data

Arbitration Ctrl Data CRC

CAN-Bus

MiniCAN
Master MiniCAN

Slave

CAN
Controller

(basic, full)

EOF

Protocol:

data

Figure 1: Coexistance of MiniCAN and CAN

MiniCAN is a concept that combines CAN compatibility with simplified functiona-
lity. It is optimised to attach basic components directly to a CAN bus. Those compo-
nents are e.g. switches, lamps or sensors and actuators that do not require more than
6 bits of data. It is a master-slave system that uses an inframe response within the CAN
data field to run a simplified protocol. Special concern was taken for security, low cost
and ease of use. It may be used both for low and high speed communications, compli-
ant to CAN specification 2.0, parts A and B.

Introduction
The Controller Area Network (CAN) protocol

has been defined within the mid eighties, originally
constructed for automotive applications. Since that
time it has become an open international standard.
Bus controllers have been developed by multiple
manufacturers. Applications were built by nume-
rous companies. It has also become popular for in-
dustrial automation and distributed measurement
systems.

It is best suited for the fail safe transmission
between several controllers. Every controller may
handle incoming and outgoing short data packa-
ges, up to eight bytes, with a multitude of type
identifiers. The usual CAN implementations requi-
re a rather complex set-up and programmable
micro controller interface. Thus the CAN concept
permits to add simple sensors or actuators, but
only at comparably high costs. It is a common stan-
dard, but the full functionality is not required for bi-
nary components. Various attempts have been
made to tackle this problem.

MiniCAN (figure 1) is a new concept. It shall
handle:

• High Number of Bus Nodes
While the usual CAN implementation collects

data from various sensors within one bus node,
this is not suited best to connect single, widely
spread sensors and actuators. CAN provides a
range of more than 2000 identifiers (11 bits), ex-
tended through the Specification 2.0B by yet
another 18 possible bits. The major handicap is
due to physical limitations of the transceiver com-
ponents. First controllers were limited to a number
of 32 for high speed operation. Newer transceivers
guarantee more than 100 nodes [PCA82C250],
depending on the physical bus implementation,
transfer speeds and transceiver capabilities. Thus
the limitation on MiniCAN bus nodes shall not be
smaller than 100.
• Short Data Packages

Binary sensors and actuators, such as a single
switch or lamp, which will be connected to the bus
require a single bit of information only. Other typi-
cal applications have shown that the exchange of
max. six bits per sensor or actuator is sufficient. A
typical example is a switch with four switching posi-
tions, two status displays and a variable back-
ground illumination.
• Low and High Speed Operation

The concept shall be applicable both for low
speed operation, specified up to 125 kbit/s, and
high speed, up to 1 Mbit/s. Other physical imple-
mentations will be possible as well.
• Low Hardware Demands

The hardware requirements shall be mini-
mised. The internal circuitry may be reduced by
less complex behaviour, e.g. by a simplified
protocol or a reduced functionality. External
circuits may be omitted by a single chip realisation
of integrated oscillator, transceiver and interface
logic.
• Low Set-up Requirements

Expense for programming and hardware con-
figuration shall be reduced as far as possible.

MiniCan 2

0 1 0 1 0 m m m 1 0 m 1 0 0 0 b b b b 4 bytes

SO
F

RT
R DLC

Arbitration Field Control Field

1 A 1 1 1 1 1 1 1 115 bit CRC

Data Field

De
l

De
l

CRC Field Ack End Of Frame

1 0 s s r 1 01 0 s s s 1 0 1 0 1 0d c c c c c 1 0 a

RT
RSlave-ID Data CRC Ack

Mini CAN remote frame

m MiniCAN Master-ID (4 bits)

b Data Length Code (= 0100)

s MiniCAN Slave-ID (5 bits)

MiniCAN RTR (= 0)r MiniCAN Acknowledgea

CAN AcknowledgeA

Bits from MiniCAN Master:

d MiniCAN Data (6 remote bits)

MiniCAN CRC (5 bits)c

Bits from MiniCAN Slave:

d d d d d

Figure 2: Remote Frame

• Compliant to CAN specifications
The solution will support the current specifica-

tions, according to 2.0 part A and B.

Protocol
Those requirements could not be fulfilled by

the original multi-master concept of CAN. There-
fore a master-slave system was invented. All usual
processing may be done by the master, while a
simplified protocol is used for the communication
between master and slave.

The total frame is similar to an ordinary CAN
Data Frame. The master works similar to other CAN
nodes. He manages bus monitoring, arbitration or
error management. When he managed to gain bus
access, he may start the master-slave communica-
tion. This takes place only within the CAN data field
while no other CAN node has bus access. The
slave returns its data within slots provided by the
master. As basic element the MiniCAN protocol
has a group of 3 bit blocks, framed by 1-0 sequen-
ces as described later on.The basic protocol of a
MiniCAN remote frame is shown in figure 2:

Every slave has to monitor the bus for a valid
master identifier. The actual realisation permits 16
different master identifiers (ID) by coding the CAN
identifier as:

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
1 0 1 0 m3 m2 m1 1 0 m0 1

Any differing signal, either within the identifier
or compared to other pre-defined bits, will cause a
form error and turn the slave passive. For example
the control bit of an extended CAN frame will be
handled this way.

Since the master-slave communication takes
place within the data field, the CAN Remote Trans-
mission Request bit (RTR) is "0", The control bits
which include the data field length were defined as

"000100" for a four bytes data field or as "000111"
for seven bytes respectively.

The MiniCAN protocol within the CAN data
field resembles a conventional CAN transmission.
First, a 5 bit slave identifier is sent. 32 different
slaves may get addressed this way. This type of
node based addresses is most appropriate for this
type of application, compared to the message
based coding that is supported by CAN.

A single MiniCAN Remote Transmission Re-
quest bit (RTR) determines, whether the master
will request (RTR = "1") or send (RTR = "0") data to
the slaves. As specified, the slave may return or
receive six bits of data respectively.

In both cases the slave will send a computed
checksum to the master. The polynomial used for
the Cyclic Redundancy Check (CRC) is x5 + x2 + 1.
It is computed from the Start Of Frame (SOF) bit to
the last data bit. It is sent inverted in order to differ
the possible combinations from the passive state.
Obviously this CRC itself is less secure than its 15-
bit CAN equivalent. Concerning that it only has to
insure the integrity of six data bits and that it has
frequent supplemental fixed form bits, it promises
sufficient and high security.

The master will compare the MiniCAN CRC with
the own checksum and acknowledge proper re-
ception by a dominant acknowledge bit returned to
the single slave. At this stage the transmission
between master and slave is complete. The master
will terminate the CAN protocol by the transmission
of the usual 15 bit CRC, according acknowledge-
ment processing and End Of Frame (EOF).

Other CAN nodes will not observe a difference
to an ordinary CAN frame. They may not call the
slaves on their own, but they may read and inter-
pret the MiniCAN frame directly.

A full MiniCAN data or remote frame will take at
least 76 bits, including 7 bits for an End Of Frame
delimiter. Due to the 1-0 form bits the length up to
the end of the MiniCAN frame is fixed, while bit
stuffing may occur within the CRC part and thus in-

MiniCan 3

0 1 0 1 0 m m m 1 0 m 1 0 0 0 b b b b 7 bytes

RT
R

DLC
Arbitration Field Control Field

1 A 1 1 1 1 1 1 1 115 bit CRC

Data Field

De
l

De
l

CRC Field Ack End Of Frame

Mini CAN inquiry frame

m MiniCAN Master-ID (4 bits) b Data Length Code (= 0111)

Bits from MiniCAN Master:

s MiniCAN remote trigger

Bits from MiniCAN Slave:

Sl
av

e
1

Sl
av

e
Sl

av
e

2 3

Sl
av

e
4

Sl
av

e
Sl

av
e

5 6

Sl
av

e
7

Sl
av

e
Sl

av
e

8 9

Sl
av

e
10

Sl
av

e
Sl

av
e

11 12

Sl
av

e
13

Sl
av

e
Sl

av
e

14 15

Sl
av

e
16

Sl
av

e
Sl

av
e

17 18

Sl
av

e
19

Sl
av

e
Sl

av
e

20 21

Sl
av

e
22

Sl
av

e
Sl

av
e

24

Sl
av

e
25

Sl
av

e
Sl

av
e

26 27

Sl
av

e
28

Sl
av

e
Sl

av
e

29 30

Sl
av

e
31

Sl
av

e
3223

1 0 s s s 1 0 s s s 1 0 s s s 1 0 s s s 1 0 s s s 1 0 s s s 1 0 s s s 1 0 s s s 1 0 s s s 1 0 s s s 1 0 s s 1 0

SO
F

Figure 3: Inquiry Frame

crease the total length with some more bits. A
minimum of three further bits is required as Inter-
frame space. As long as the slaves show a rare
need of communication, this will only add a minor
overhead to net traffic. But while the master has to
perform a cyclic state request of its slaves, this may
cause frequent, redundant requests. For better
net performance another type of inquiry frame has
been invented (figure 3). This frame allows the
master to detect by a single transmission whether
there had been a change at any of its slaves.

For each slave there is a reserved slot within
the seven bytes long data field (Control Field =
000111). Each slave which observed a modifica-
tion on its input port will overwrite its slot by a do-
minant bit. The master then may send another re-
mote frame to the slave in order to obtain the value
of the changed state. For example one may com-
pute the net load on a 125 kbit/s line. The total in-
quiry frame, including EOF delimiters, is 100 bits
long. A cyclic check for every 50 ms will cause a net
load of 1.6 %. Another solution that sends wake-
up signals from a slave to the master is described
later on.

Bit Timing
The mechanism of the inframe response is

nothing specific of MiniCAN, but a standard feature
of CAN: The acknowledge bit requires an equal
processing, arbitration is comparable. Thus the
same limitations may be observed. For the physi-
cal transfer of information along the transmission
and reception path various asynchronous delays
will occur. For high speed transmission they are
described e.g. within [ISO11898].

Figure 4 shows the typical delays along the
bus line. Those delays are caused by output delay
of the transmitter (t1), delay along the bus line (t2),
input delay of the receiver (t3), processing time
within the electronic control unit (t4), output delay
of the second transmitter (t5), delay in opposite di-
rection along the bus line (t6) and input delay of
the original receiver (t7).

[ISO11898] names a specific line delay of no-
minal 5 ns/m and a max. bus length of 40 m for

High Speed operation. For a worst case estimation
a signal will take t2 = t6 = 40 m * 5 ns/m = 200 ns
along the bus line. Assuming a perfect compensa-
tion of delays within the second node (t3 + t4 + t5 =
0), a dominant signal from a second node will ap-
pear after t2 + t6 = 400 ns delay at the bus connec-
tion of the first node. For a bit rate of 1 Mbit/s the
total bit time length itself is 1 000 ns.

For those reasons a rather sophisticated syn-
chronisation mechanism is required. CAN treats
these delays by programming the specified bit
segments. Strict limitations are set on oscillator to-
lerance within [CAN2.0]. The original specification
asked for an oscillator precision of 0.5 %. This was
eased for low speed transmissions to 1.5 %.
Ceramic resonators may fulfil this specification,
while quartz oscillators are requested for higher
precision.

Another approach to minimise the hardware
demands is not to use an external oscillator at all.
Therefore a special integrated phase locked loop
(PLL) unit within the slaves will detect and use the
valid bus speed. For those reasons the 1-0 se-
quences are not only used to increase security,
detect error conditions, avoid bit stuffing and force
a fixed protocol length, but also to cause suited
edges for exact hard synchronisation, sample
points and bit time length computation.

This PLL uses an integrated oscillator of low
precision, but takes both the bus signals and veri-
fication of the protocol contents to adjust the bit
time length. Signal disturbances may get detected
and filtered. The master provides exact edges for
resynchronisation since it has to use the usual re-
ference oscillator. Thus a lower precision is re-
quired for the slaves that never send more than
three consecutive bits until a hard resynchronisa-
tion is possible.

Actual tests are processed to verify whether an
automatic detection of sample point and synchro-
nisation is suitable. As default a differential high
speed bus line is assumed. Single line and low
speed mode are possible as well. Open and short
bus line failures do not hinder the communication
as far as possible.

These mechanisms are not part of the Mini-

MiniCan 4

CAN concept itself, but depend on a special set-
up of the physical connection. The aim is to use a
slave that does neither require any programming of
bit timing or bus speeds, nor uses an external
oscillator, but relies on the built-in mechanisms.

MiniCAN
Master MiniCAN

Slave

1 2

1node

2node

t1 t3t2 t5

t4

t6

t7

+t10 +t2 +t6

bus signal at

0 (dominant)

Figure 4: MiniCAN Bus Timing

Realisation
The MiniCAN concept is a definition of the data

link layer, according to the Open System Inter-
connection standard (OSI: ISO 7498). From the
user interface as highest layer, a slave accepts the
address of master and slave ID. Six bits of data may
get requested from the input lines by a remote
frame. Six bits of data may get received and given
to the output lines. From the physical layer it re-
ceives the bit information. It sends the bits for re-
mote data, CRC or inquiry frame. As the PLL has to
rely on further protocol analysis, some more infor-
mation has to be exchanged. As indicated within
the previous section, the physical layer may be ei-
ther programmable or use auto configuration.

Different alternatives are possible for building
the full slave system. Figure 5 shows a suggested
minimal configuration. The programming of the
master ID is done by mask programmable manufac-
turing. Thus every series of chips owns one of the
fixed 16 master IDs. The slave ID may get defined
e.g. by special input pins, by floating I/O pins or a
programmable address (PROM). For a low-cost in-
terface it is suggested to use an only one time
programmable mode, e.g. by fuse technology.
The input and output ports may get used separa-
tely or unified. The example shows a bi-directional
6 bits I/O port. Other variants may get adopted to
customers' demands. The actual protocol is ex-
pected as optimum solution by number of slaves,
data bits and security.

MiniCAN
Data Link Layer

data remote master
ID

slave
ID

6
6 4 5

PLL

CAN_H CAN_L

6 I/O

GND

V_CC

Figure 5: MiniCAN Slave: building blocks

A typical application takes both rising and fal-
ling signals from the input port. Without analysis a
slave forwards these data within a remote frame to
its master. The master may use a free program-
mable micro controller to interpret and translate this
data. According to this translation it releases the
actions at its slaves by a data frame, that appears at
the slaves' output ports as toggle, switch, ana-
logue digitised value etc.

Some further design variants show consi-
derable improvements for these functions. The in-
put has to get buffered when a signal is set and re-
set, while there had been no state request by a
remote frame in between. A proper state machine
was designed. Thus short events get buffered.

Another extension may implement a sleep
mode. While in general a slave may not initiate a
transmission on its own, there may be the need for
a low-power mode. Cyclic requests by the master
cause a power consuming standby or repeated
wake-up. Instead a slave may initiate a wake-up
signal via the bus. One solution is to send out a
short dominant signal. Since the slave has neither
an arbitration unit nor an exact bit time unit, this
signal is of no exact predictable length, but may be
read as error frame or cause an error frame of other
nodes. This will tell the master to send an inquiry
frame.

A preliminary software emulation has proved
reliable transmission. Both the master and the
slaves were emulated by standard micro controllers
of type Philips: PCA 80C552. They were clocked
by a 24 MHz oscillator, but use 12 clock cycles for
one processor cycle and multiple processor cycles
for one interrupt. Thus the maximum possible bus
speed is about 60 kbit/s.

A MiniCAN Master may have the same building
blocks as the usual CAN controllers, but requires
modifications:
• The bus monitoring has to be set passive while

slaves transmit data.
Since a slave may overwrite a recessive bit from the
master within its slot by a dominant bit, the master

MiniCan 5

has to read this information, but may not cause a bit
error. A bit error is detected, when the bit value
differs from the bit value sent. According to the
actual CAN specification the monitoring is already
deactivated "when a recessive bit is sent during
arbitration, or a recessive bit is sent during ACK
slot" ([ISO11898]). This must be extended for the
slots reserved for the MiniCAN protocol.
• The master must compute and compare the 5

bits MiniCAN CRC and send the correspon-
ding MiniCAN acknowledge.

This mechanism is identical to the 15 bits CAN
CRC. This CRC is computed during reception. At
least one bit time may be used for its computation
before an acknowledge has to be sent. Both CAN
and MiniCAN require a positive acknowledge on a
correct checksum.
• The master must compute the 15 bits CAN

CRC on all valid data, including the data recei-
ved from the slaves.

The actual CAN CRC is computed by the genera-
tor-polynomial x15 + x14 + x10 + x8 + x7 + x4 + x3 +
1 on SOF, Arbitration field, Control field and Data
field. Since the Data field may get modified by the
slaves, the CRC must be computed not based on
data sent from the master but on data sent and
slave bits monitored. This computation is similar to
the CRC verification by a receiver.

A combined CAN controller and MiniCAN
master has been developed. It is based on the
programmable fieldbus controller IX1 [DELTAt]. It is
built on a FORTH programmed prototyping sys-
tem. Although this controller provides two dedica-
ted CRC units, the 5 bits MiniCAN CRC had to be
computed by serial software routines that required
multiple processor cycles. Thus its actual speed is
limited to 500 kbit/s, while 1Mbps is aimed at. By an
external CRC module a further speed increase is
possible. Due to the limited resources of the IX1 a
second, programmable micro controller is required
to evaluate the slaves' information and to release
the proper actions. It offers the full flexibility to
configure only one master node for all attached
slaves. A customised CAN controller with integra-
ted MiniCAN master ability may perform both. The
actual configuration is controlled by a PC interface
directly connected to the IX1.

For higher performance the slaves were im-
plemented as gate level netlist and realised within
FPGAs. Those Free Programmable Gate Arrays
were from the Texas Instruments TPC10 Series.
Design, simulation and programming was done on
the software systems ViewLogic and TI Action
Logic. The gate arrays are based on regular multi-
plexer structures with antifuse interconnection.
The max. clock frequency is specified as 100 MHz,
more than actually required. A single TPC1010
chip provides 295 logic modules, equivalent to
1200 gates, and is sufficient to hold the full Mini-
CAN logic.

The actual design of a PLL shows a compara-
ble complexity of several hundred modules. Actual
research aims at test and optimisation of this buil-

ding block. CAN transceivers require special buf-
fers and thus could not be mapped within the
FPGAs, but are attached as external components.

A migration from the FPGA's gate-level netlist
to a real chip synthesis may include both. It will
have to include the according mechanisms for
programming the master and slave ID and the I/O
port configuration. As described above, the com-
pensation of buffer delays and the integrated
oscillator is to be taken into consideration for the
manufacturing process.

Results
A new concept has been developed that can

be used within the existing CAN environment. Its
inframe response and master-slave concept is not
fully conform, but compliant to the actual CAN
specifications, since other CAN controllers will not
observe any difference to the ordinary CAN com-
munication. This concept offers

• a six bit data port for sensors and actuators of
lower complexity

• direct connectability to low and high speed
CAN bus lines

• 32 slaves per every single of 16 possible
master IDs

• low and high bus speeds up to 1 Mbit/s
• high transfer security,
• low hardware demands
• low configuration effort
• compliancy to the CAN specification 2.0, part A

and B.

References

[CAN2.0] CAN Specification, Version 2.0.
Robert Bosch GmbH, Stuttgart,
1991.

[DELTAt] DELTA t: Programmable Fieldbus
Controller IX1. Hamburg, 1995.

[ISO11898] ISO 11898: Road Vehicles –
Interchange of digital information
– Controller Area Network (CAN)
for high-speed communication.
International Organization for
Standardization, 1993.

[PCA82C250] Philips: Data Sheet PCA82C250.
CAN controller Interface.
Eindhoven, September 1994

