
iCC 1996
3rd international CAN Conference

in Paris (France)

Sponsored by

Motorola Semiconductor
National Semiconductor
Philips Semiconductors

Organized by

CAN in Automation (CiA)
international users and manufacturers group

Am Weichselgarten 26
D-91058 Erlangen

Phone +49-9131-69086-0
Fax +49-9131-69086-79

Email:headquarters@can-cia.de
URL: http://www.can-cia.de

DeviceNet Configuration Using an Electronic Data Sheet

David Brod
Rockwell Automation - Allen-Bradley

Mequon, WI

Scott Braun
Rockwell Automation - Allen-Bradley

Mequon, WI

Abstract - During the development of the DeviceNet Speci-
fication, it became apparent that it would be necessary to
provide a mechanism for common user friendly configura-
tion of all DeviceNet products. It would have to be robust
enough to cover a wide range of products, from the very
simple, to the very complex. It would be required to be
used by arbitrary configuration tools and be independent
of the implementation of these tools. The configuration
mechanism would also have to be easy to implement in
order to facilitate its adoption by product developers. It
would also have to be cost effective to implement so as not
to add excessive cost to inexpensive devices. This paper
describes how the Electronic Data Sheet achieves these
goals.

I. INTRODUCTION

DeviceNet is a communications network that connects
industrial devices; such as, actuators, sensors, push buttons,
motor drives, and programmable logic controllers. De-
viceNet allows for device configuration across the network
and for embedding configuration or diagnostic data in de-
vices. Any device containing configuration data accessible
through the DeviceNet communications interface requires a
configuration tool to access and possibly modify the data. A
device configured only through the use of external switches,
jumpers, thumbwheels, or other propriety interfaces may still
require a means for a tool to access and determine the state of
the hardware configuration switches.

The DeviceNet specification allows data residing within a
device to be represented as arbitrary data with arbitrary object
paths (Class/Instance/Attribute). No limitations are placed
on the attribute path, nor the meaning of the configuration
data of a device. In order to access and interpret the data
stored in the device, either a configuration tool or the user
will require knowledge about the data available in the device.
This paper describes four methods of accessing and interpret-
ing internal device data:

• Custom configuration software
• Device data sheet
• Parameter objects
• Electronic Data Sheet

 DeviceNet is a trademark of the Open DeviceNet Vendor
Association, Inc.

Each method is reviewed in the paper with special emphasis
on the Electronic Data Sheet.

A. Custom Configuration Software

A possible method of configuring a device requires the user
to purchase and utilize product specific custom software to
configure the device. This method burdens the device devel-
opers to develop both the actual device and the configuration
software. Customers of these types of devices benefit from a
configuration tool highly responsive to the demands and
needs of that vendor’s specific type of device.

An alternative to product specific custom configuration
software, would be for vendor specific or Special Interest
Group (SIG) specific software. Vendor specific software
would provide access only to those devices sold and distrib-
uted by a specific vendor. This would allow for a specific
vendor to provide unique value to their devices that may util-
ize particular vendor specific objects, services, or attributes
possible on DeviceNet. The software would need to be
somewhat generic in order to address possible differences be-
tween unique product types.

SIG specific configuration software allows multiple ven-
dors of similar products the ability to provide a common
configuration or commissioning software tool by specific
product category. All vendors supporting the documented
SIG structures could then utilize a single tool that was highly
optimized to the needs of the users of those products.

The disadvantage of any custom configuration software
tool is the inability to address a complete solution to all pos-
sible devices on the network. The application of custom
tools has a negative side effect of limiting access or capabili-
ties within the open system. Therefore, the specific customi-
zation features of the tool works against the benefits of the
actual product when used in conjunction with other unsup-
ported products.

DeviceNet supports the ability to develop and implement
custom configuration software, but also realizes additional
benefits from the ability to provide standard methods to pro-
mote open structures for configuration of any and all devices.

B. Device Data Sheet

A simple and generic method of configuring a device re-
quires the user to refer to a device’s data sheet provided by
the manufacturer. This data sheet describes the data available
in the device and how to access it. In this situation, the user
has to tell the configuration tool how to access the data by
specifying the data size, the desired service, and the class,
instance, and attribute index by numeric or symbolic refer-
ence. The service specifies what action the tool is to perform,
such as getting or setting a value. The class, instance, and
attribute specify the location of a particular datum stored in
the device. However, the configuration tool would not be
able to format nor provide any additional information about
the configuration or diagnostic data other than the user’s in-
terpretation of the returned value. Therefore, data sheets alone
would not provide an acceptable user-friendly method for
configuring devices.

C. Parameter Objects

A device manufacturer can embed all of the required infor-
mation concerning the configuration or diagnostic data within
the device through the use of parameter objects. Parameter
objects contain an open and optional method to define a
common data structure accessible to any DeviceNet product
developer. Parameter objects provide a common public in-
terface to a device’s accessible data where each parameter ob-
ject corresponds to a single configuration or diagnostic da-
tum. The value attribute of the parameter object may refer-
ence itself or directly reference an attribute of another object as
specified by the link path attribute of the parameter object.

A full parameter object contains all of the information nec-
essary for a configuration tool to access, display, and modify
any product’s datum:

• link path to the referenced datum value
• descriptor, data size, and data type
• data limits and default values
• formatting information
• descriptive text

A device that provides access to its data by implementing full
parameter objects enables a configuration tool to provide on-
line user-friendly device configuration. However, full parame-
ter objects require additional memory and resources in the
device. Therefore, the developer of a simple, low cost device
may choose not to implement parameter objects due to mem-
ory and/or cost constraints.

A partially defined parameter object, called a parameter
object stub, excludes some of the information included in a
full parameter object; such as, descriptive text, datum limits,
and scaling information. However, the parameter object stub
can still establish a link to the configuration data in the de-
vice. The limitation of this method is that tools cannot dis-
play the datum values in user acceptable units without the aid
of additional product specific software components to provide
the necessary missing attributes.

D. Electronic Data Sheet

The DeviceNet standard defines a specially formatted
ASCII text file, or standardized software component, called an
Electronic Data Sheet (EDS) to provide an open method of
defining the accessible data and the input/output (I/O) charac-
teristics of a device. The format of the data in the EDS is
independent of the configuration tool or file system.

An EDS provides information necessary for a configuration
tool to access diagnostic data or modify the configurable data
within a device. A device manufacturer can incorporate spe-
cific information in an EDS to enable configuration tools to
provide the following features:

• visually format the configuration and diagnostic data
• automate limit checking of user entered values
• provide the user with a selection of choices for each

configurable datum
• help automate the device configuration process

Non-standard information may also be included in the EDS
through the use of comment lines. However, this information
may not be interpreted by the configuration tools.

In addition, configuring devices via an EDS adds no cost
to the devices themselves, except for the possible cost of
transferring the EDS files to the user. Depending on the
method or methods chosen, this transfer cost can be mini-
mized.

The remainder of this paper describes device configuration
using an EDS and a brief overview of the EDS format. The
Appendix contains an example of an EDS. The reader is
referred to the DeviceNet specification for a complete descrip-
tion of the EDS file format.

II. EDS File Specification of a Device’s Data

A configuration tool, designed to utilize Electronic Data
Sheets, reads and interprets an EDS file to determine what
configuration or diagnostic data is stored in the device, where
to access the data, and how to display or modify the data in
the device. Basically, the type of information stored in an
EDS file determines the level of functionality that a configura-
tion tool can provide to the user. An EDS represents the
device’s configuration or diagnostic data by utilizing an
ASCII representation of either the full parameter object or the
parameter object stub.

The use of parameter object stubs in an EDS allows a con-
figuration tool to access and to modify the configuration data
in the device. However, the user will still require a data
sheet to determine the data’s context, content, and format.
An EDS parameter object stub provides the following infor-
mation:

• link path (pointer) to the corresponding datum
• descriptor, data size, and data type

The link path points to a specific datum in the device. This
referenced data corresponds to the value attribute of the par-
ticular parameter object or to an attribute of another object
implemented in the device.

The use of full parameter objects in an EDS provides addi-
tional information about the device’s configuration data:

• data limits and default values
• formatting information
• descriptive parameter names and units
• optional help text

This information allows a configuration tool to access and to
display the product’s data in the format specified by the EDS.
This format includes the ability to display descriptive text
strings. If the data is configurable, then the tool can prompt
the user with a list of choices or data entry fields to modify
the data. In addition, the tool can validate the user’s data
choices.

A device manufacturer may decide to implement parameter
object stubs in the device to provide a known public interface
to the device’s configuration data for simple network tools,
while still providing an EDS file to supply the remaining
parameter information for more complex tools. This hybrid
approach minimizes the amount of memory required by the
actual device to store all the database information internally
while still providing some degree of information on-line.

III. Creating Electronic Data Sheets

Electronic Data Sheets can be created by a product devel-
opment group via a simple text editor. These files can be
shipped with the DeviceNet product or made available over a
customer accessible bulletin board or an Internet server. It is
also acceptable that the device manufacturer only provide a
printed listing of the EDS and thereby require the user to
create the EDS by text entry. However, this method places
an unnecessary burden on the end user, can lead to customer
typographical errors, and is strongly discouraged.

Devices that support full access to their database over De-
viceNet by supporting Parameter objects, can have a major
portion of their product’s EDS file uploaded directly over the
network. This method frees product developers from having
to issue computer media containing the EDS file with their
products or from requiring users to access electronic bulletin
boards to download the EDS files. However, the user would
be required or prompted to specify the device’s I/O character-
istics since these can not be uploaded from the device in a
common, open method today.

Any of these methods, or a combination of any of them
will provide any DeviceNet tool the knowledge and under-
standing to access and configure the network devices.

IV. EDS File Organization

The EDS file has several sections that describe both the
file and the device for application by the configuration tool.
The following figure, Fig. 1, shows the structure of an EDS
file. The bold text (within brackets) in Fig. 1 are keywords
defined by the EDS specification that indicate the start of a
section.

[File]
File Description Section

[Device]
Device Description Section

[IO_Info]
I/O Characteristics Section

[ParamClass]
Parameter Class Section

[Params]
Parameter Section

[Groups]
Parameter Groups Section (optional)

[EnumPar]
Parameter Enumeration Section (optional)

Fig. 1 - EDS File Structure

A. File Description Section

The file description section contains information about the
EDS file; such as:

• File Description Text (required)
• File Creation Date and Time (required)
• Last Modification Date and Time (optional)
• EDS Revision (optional)

A configuration tool can read this information, format it, and
display it to the user. A user can modify the file description
information in the EDS to track any changes the user may
make to the file.

B. Device Description Section

The Device Description section contains information about
the device. This information can be compared to the actual
device on the network by the tool to insure that the EDS
matches the actual device to be configured. This information
could also be referenced for use by other device’s who may be
responsible for the application of this device or other devices
in the system. This feature could provide for a safety mecha-

nism to insure correct network behavior as new or different
devices are added or replaced. The following lists some of
the entries located in this section:

• Vendor Name
• Product Type
• Product Code
• Revision
• Catalog Number

C. I/O Characteristics

A DeviceNet device can produce and consume I/O data
over a connection. In order for a configuration tool to be able
to interpret the device’s I/O capabilities, an EDS file must
specify the I/O characteristics or behaviors of a DeviceNet
device. The available choices for I/O behavior are a part of
the EDS file specification. The EDS may contain the follow-
ing information:

• Default I/O Information (required)
• I/O Poll Information (optional)
• I/O Strobe Information (optional)
• Device’s Producing Connection (optional)
• Device’s Consumer Connection (optional)

D. Parameter Class Section

The parameter class section contain the following informa-
tion:

• Maximum Instances
• Parameter Class Descriptor

Maximum Instances specify the number of parameters defined
in the EDS. The Parameter Class Descriptor specifies if the
device supports parameter objects. If the device supports
parameter objects, then the descriptor also specifies whether
full parameter objects or parameter object stubs are imple-
mented and if device data are stored in non-volatile storage
within the device.

E. Parameters Section

The parameters section identifies all of the configuration or
diagnostic data in a device. The data fields follow the format
of the parameter object. Each entry in the parameter section
corresponds to a specific instance of user data in the device.
The actual data may correspond to an actual parameter object
value in the device or to any attribute of another object. Each
parameter entry contains the following required information:

• Parameter Value
• Path and Path Size
• Descriptor, Data Type, and Data Size

The path is a text string that describes the location of the data
in the device while the path size specifies the number of char-
acters in the path string. If the path size is zero and the path
string is empty, then the parameter entry references a parame-
ter object in the device. The descriptor, data type, and data
size specify the components of the parameter value that give
the parameter value scaleability. The descriptor also specifies
whether the parameter object supports scaling and if the value
attribute can be set by the user.

A parameter entry may contain additional information to
allow a configuration tool to provide more useful visual in-
terpretation to the user:

• Parameter Name, Units, and Help Strings
• Minimum, Maximum, and Default Values
• Scaling Information
• Scaling Links
• Decimal Precision

A configuration tool can use the descriptor, scaling informa-
tion, and decimal precision to format and display the data.
The minimum and maximum values allow a tool to validate
a user’s data choice. Scaling links optionally specify that a
parameter value is scaled based on the data value of another
parameter.

F. Parameter Groups Section

The parameter groups section identifies all of the parameter
groupings in a device. Each parameter group can contain a
list of the parameter object instances defined by the product.
Parameter groups allow a configuration tool to present to the
user several configuration data elements as a named or refer-
enced group. This method provides a mechanism to segment
similar parameter functions together to aid in the configura-
tion or diagnosis of the product when applied.

Parameter groups can also be read or interpreted directly
from the product through the available ‘Parameter Group’
object. Support of this object is beneficial, but optional.

A unique feature of the parameter group section is that end
users can create their own groupings by editing the EDS. The
addition or removal of particular groups can provide a cus-
tomer with a method to customize a product interface or con-
figuration tool to fit particular needs or situations. The user
may also desire to change the names of the parameters or pa-
rameter groups to fit the application needs.

G. Parameter Enumeration Strings Section

The parameter enumeration strings section defines an enu-
merated list of textual strings for each parameter that supports
enumeration strings. Each string represents a specific parame-
ter value where subsequent entries increment by one. Enu-
meration allows a configuration tool to present a parameter
value as a text string and provide the user a textual list of

choices. This method provides the tool the ability to give
the user a high level of parameter interpretation when access-
ing and utilizing an appropriate datum.

V. Conclusion

The EDS specification provides a common, consistent and
compatible approach that enables network tools to interpret
and access configuration and diagnostic data from devices
connected to a DeviceNet communication network. An EDS
file provides the mechanism that allows DeviceNet to provide
an open and flexible means to standardize on a format to pro-
vide consistent interpretation of a device’s accessible data.

Appendix

The following listing shows a sample Electronic Data Sheet.

$ Description: The following file is the EDS
$ for a DeviceNet Photoelectric Sensor
$
[File]

DescText = "DeviceNet Photoelectric Sensor EDS File";
CreateDate = 4-22-95;
CreateTime = 10:00:00;

[Device]
VendCode = 99;
ProdType = 6;
ProdCode = 10;
MajRev = 1;
MinRev = 4;
VendName = "XYZ Sensors, Inc.";
ProdTypeStr = "Photoelectric Sensor";
ProdName = "Transmitted Beam Receiver";
Catalog = "";

[IO_Info]

Default = 0x0002; $ Strobe only
PollInfo = 0, 0, 0; $ Not supported
StrobeInfo = 0x0002, 1, 1; $ Use Input1 / Output1

Input1 =
1, $ 1 byte
1, $ 1 bit used
0x0002, $ Strobe only
"Sensor Output", $ Name
6, $ Path size
"20 04 24 01 30 03", $ Path to value attribute
"Output value."; $ Help string

Output1 =
0, $ 0 byte
0, $ 0 bit used
0x0002, $ Strobe only
"", $ Name
0, $ Path size
"", $ Path to value attribute
""; $ Help string

[ParamClass]
MaxInst = 2;
Descriptor = 0x09;

[Params]
Param1 = $ Operate Mode

0, $ Data Placeholder
6, "20 0f 24 01 30 01", $ Path size and Path to Attr
0x02, $ Descriptor
2, 2, $ Data Type and Size
"Operate Mode", $ Name
" ", $ Units (Not Used)
".”, $ Help
0,1,0, $ min, max, default
1,1,1,0, $ scaling factors
1,1,1,0, $ scaling links
0; $ decimal places

Param2 = $ Output
0, $ Data Placeholder
6, "20 0e 24 01 30 01", $ Path to Output Attribute
0x12, $ Descriptor
4, 1, $ Data Type and Size
"Output", $ Name
" ", $ Units
" ", $ Help
0,1,0, $ min, max, default values
1,1,1,0, $ Scaling
1,1,1,0, $ Scaling links
0; $ decimal places

[EnumPar]
Param1 = $ Output Mode Enumerated Strings

"Light Operate", $ For value = 0
"Dark Operate"; $ For value = 1

Param2 = $ Output Enumerated Strings
"Off", $ For value = 0
"On"; $ For value = 1

