
Timing Performance of Adaptable Distributed Real-
Time Control Systems

M. Dani Baba∗, H. Ekiz, A. Kutlu and E. T. Powner
School of Engineering
University of Sussex

Falmer, Brighton BN1 9QT, UK.

Abstract
 A distributed real-time computer system consists of several
processing nodes interconnected by communication channels. In a
safety critical application, the real-time system should maintain timely
and dependable services despite component failures or environmental
changes such as transient overloads. In this paper the imprecise
computation technique is integrated with fault tolerance schemes and
adopted as the Adaptable Management System (AMS) which adjusts the
operating strategy of the real-time system in response to changing
application environments and the internal fault patterns.
 The timing response performance of the AMS for a Controller
Area Network (CAN) based distributed real-time system is evaluated as
to whether the timing constraints is satisfied for normal, overload, and
degraded operational modes. The simulation study employs the Society
of Automotive Engineers (SAE) real-time control system benchmark as
the workload model. The simulation results also show that the quality of
service of the AMS can be improved by varying the optional message in
the workload.

1.0 Introduction
 A hard real-time system is typically composed of a number of periodic and sporadic
tasks which communicate their data by passing messages. In a distributed hard real-time
system these messages are transferred between processing nodes via a communication
network. In order to guarantee that the timing requirements of all tasks are satisfied, the total
communication delay between sending and receiving a message must be bounded.
 In a safety critical application, the distributed hard real-time system should maintain
timely and dependable services despite component failures or overloads due to changes in
the environment and system conditions. When the real-time system becomes overloaded, it's
hard real-time tasks may miss their deadlines and if employed in a critical application can
results in fatal consequences. When a component fails or an overload occurs, we want the
system to degrade in a graceful, predictable manner. Likewise the ability to handle component
faults and changes in operational modes are essential for a distributed hard real-time system,
and particularly when used in a safety critical application. The next generation of complex
hard real-time systems will be required to exhibit; adaptive and dynamic behaviour, resilience
to software/hardware failures and graceful degradation under conditions of overload [1].
 To achieve such complex systems, two conflicting requirements must be satisfied:
Firstly the safety critical services must be guaranteed to maintain results of minimum
acceptable quality and reliability by their deadlines. Secondly the system utility as determined

∗ School of Engineering, Institute Technology MARA, 40450 Shah Alam, Selangor, Malaysia.

 2

by the timeliness, precision and confidence level of the results produced must be maximised.
For a critical application, it is reasonable to argue that no event should be unpredictable and
that schedulability should be guaranteed before execution. This implies the use of a static
scheduling algorithm which can satisfy the first requirement. Whilst the fault tolerance
techniques such as the distributed recovery blocks, N-modular redundancy and N-version
programming can provide resilience to failures and some features of graceful degradation.
 To meet the second requirement of maximising system utility, such techniques as
Imprecise computation [3], Multiple versions [4] and Approximate processing [5] schemes can
be considered. Each tasks in these schemes can be decomposed into mandatory and
optional components. The mandatory components represent critical tasks which must be
executed before their deadlines, whilst the timely completion of optional components
enhances the utility of the system but is not essential. Typically, the complete execution of
optional tasks will produce the precise desired results. However, to execute all the mandatory
and optional tasks in the presence of components fault, represents a situation of extreme
overload, there remains the issue of choosing the suitable operational modes for the various
application environments and fault requirements.
 Our approach to this issue is to propose a framework towards an Adaptable
Management System (AMS) which adjusts the operating strategy of the real-time system in
response to changing application environments and the internal fault patterns. In this paper
the imprecise computation technique [3] is incorporated into an Adaptable Management
System (AMS) which can adjust its operating strategy in response to changes in the
application environment as well as changes in the internal fault pattern. The timing
performance of the AMS for a Controller Area Network (CAN) based distributed real-time
control system is evaluated as to whether the timing constraint is satisfied for normal,
overload, and degraded operational modes. The simulation uses the Society of Automotive
Engineers (SAE) automotive control system benchmark which is typically associated with
real-time control system as the workload. This paper is structured as follows: The next section
outlines the CAN protocol. Section 3 describes the SAE benchmark workload model. Section
4 presents the simulation model. Section 5 presents the performance evaluation results.
Section 6 describes the quality of result. Finally the paper concludes with Section 7.

2.0 Controller Area Network.
 The Controller Area Network (CAN) is an advanced serial communication protocol
which can efficiently support distributed real-time control system with a very high level of data
integrity [2]. CAN was originally designed for automotive applications where nodes such as
the engine management system, anti-lock braking electronic unit, and other vehicle control
systems were to be connected to single communication bus. A CAN based system is typically
consists of a number of processors which are connected to the broadcast bus via the CAN
controller devices. More information on CAN protocol and the operation of the network
controller is available in literature [2,6]. However, some features of the protocol which are
especially relevent to our study are discussed here.

2.1 Error Detection and Recovery
 The CAN protocol implements powerful error detection mechanisms focusing on
Cyclic Redundancy Check (CRC), bit stuffing, and both positive and negative
acknowledgement. The significant feature of CAN error detection scheme is that CAN alerts
all stations in the network when an error has been detected at the time the error is first
recognised. As a result, non-productive bus time is minimized and data quality is ensured.
The stations are provided with this information by using two complimentary acknowledge
schemes. The receiver stations will provide positive acknowledge upon receiving a correct
message. Negative acknowledgement will be sent out by any station at the point it detects an
error in the message. The corrupted message will be rejected by all receiver stations and the
transmitter station will automatically re-enter arbitration to retransmit the failed message.
Additionally, if a CAN controller transmits repetitive errors, it will remove itself from the bus
and notify the host processor.

3.0 Workload Model
 The structure of the workload model used in the simulation contains seven control
nodes. These seven automotive control nodes are connected to a real-time communication

 3

channel which handles the SAE benchmark signals containing 53 different types of
messages. Some of these messages are sporadic in nature while others are periodic control
data. Since the benchmark does not specify the minimum interarrival time for some sporadic
messages, then sensible values are assumed. From previous work [7], the 53 types of the
benchmark signals are shown to be unschedulable using the Deadline Monotonic (DM)
scheme at 125Kbits/s bus speed. In fact only 7 types of messages satisfy their timing
constraints as computed using the worse case timing response analysis. However at a higher
bus speed, the DM scheme has no difficulty in scheduling all the benchmark signals. To
overcome the scheduling problem, a message piggybacking technique has been employed to
reduce the bus utilisation. This is implemented in the form of message server which polls and
collects several messages from the same source and then sends out as a single long
message. The server chosen has 10ms period and a latency of 10ms. The newly transformed
benchmark signals now consists of only 17 message types as shown in Table: 1. This newly
transformed set of benchmark signals has been adopted as the workload model in the
simulation. The bus speed used in the simulation is 125Kbits/s since a higher speed does not
pose any scheduling difficulty and is also suitable for use in twisted pair cabling.

Message
Number

Signals
Number

Size
(bytes)

Jitter
(ms)

Period
(ms)

Deadline
(ms)

Periodic/
Sporadic

1 14 1 0.1 50.0 5.0 S
2 8,9 2 0.1 5.0 5.0 P
3 7 1 0.1 5.0 5.0 P
4 43,49 2 0.1 5.0 5.0 P
5 11 1 0.1 5.0 5.0 P
6 29,30,32,42 4 0.1 5.0 5.0 P
7 31,34,35,37,38,39

40,44,46,48,53,
4 0.2 10.0 10.0 S

8 23,24,25,28 1 0.2 10.0 10.0 S
9 15,16,17,19,20,22

26,27
2 0.2 10.0 10.0 S

10 41,45,47,50,51,52 2 0.2 10.0 10.0 S
11 18 1 0.2 50.0 20.0 S
12 1,2,4,6 4 0.3 100.0 100.0 P
13 12 1 0.3 100.0 100.0 P
14 10 1 0.2 100.0 100.0 P
15 3,5,13 3 0.4 1000.0 1000.0 P
16 21 1 0.3 1000.0 1000.0 P
17 33,36 1 0.3 1000.0 1000.0 P

Table 1: Transformed Benchmark Signals

4.0 Simulation Model
 The 17 transformed benchmark signals are mapped into the CAN standard message
format. The message priority is ordered according to deadline monotonic scheme: a message
with short deadline is assigned with a higher priority [7]. In this simulation the maximum
message delivery delay is evaluated as in Equation 1.

 (1)

The message frame as depicted in Figure 2 contains information such as the identifier, error
checking, control field, and the user data. Since a stuff bit is added by the transmitting node
after 5 consecutive equal bit levels, the message frame length can vary as in Equation 2. The
message frame will be at its maximum length if after every 5th bit in the bit stream a stuffbit is
added. This means that the maximum message frame length is 20% longer than the minimum
length.

 (2)

 4

 The overhead of a CAN message frame amounts to a total of 47 bits, out of which 34
bits are subjected to bit-stuffing. The data field (between 0 and 8 bytes) in the message frame
is also being subjected to bit-stuffing. However, on the average 2 stuffbits are sufficient for
most short messages. The message frame length is the most important factor that influences
the delivery delay time. The overhead time comprises of software delay, controller delay and
the bus access time. However, in this paper, the evaluation of the worst case message
delivery delay ignores the software delay incurred when sending or receiving messages.
 To ensure that the worse case scenario exists in the simulation environment, all the
17 types of messages are initially generated simultaneously. This creates the situation where
all messages are available and attempt to access the bus at the same time. At this critical
instant the delivery of messages will have the largest latency time.

4.1 Fault Tolerant Model
 The distributed fault tolerant model of the real-time control system consists of a set of
fail-silent computing stations connected by one or two replicated broadcast global
communication channels. The simulation model adopts the approach to cluster the computing
stations into Fault Tolerant Units (FTU) [8]. The FTU consists of two active but redundant
computing stations also known as network nodes, namely the primary and secondary nodes.
All the network nodes belonging to a particular FTU to provide the same service. They receive
and process similar messages, and therefore maintain internal state equivalence. However,
there is a slight difference since the primary node can always broadcast its messages on the
global communication channel, whilst the secondary node can only transmit its messages
whenever the primary node is faulty. Every FTU provides its specified services as long as at
least one of the network nodes is functioning. Figure 1 shows the distributed fault tolerant
model of the real-time control system which comprises of seven FTUs.

Figure 1: Distributed Fault Tolerant Model

 The CAN error handling and recovery mechanisms are assumed to be integrated into
the Adaptive Management System (AMS), and the AMS is distributed to all network nodes. If
the AMS detects the primary node is faulty, then the AMS will disconnect the faulty node from
the global bus. However, before the faulty primary node can be disconnected, it's AMS will
activate the secondary node from the same FTU to begin transmitting messages. The
secondary node can be initiated via the dual redundant intra-node-pair channel of the FTU.
While the global communication channel consists of two active broadcast buses, and here
called CANbus and its replicate the RCANbus. For improved bus efficiency, both busses are
involved in the transfer of messages, and if one of them fails, then all messages will go
through the working bus. In CAN protocol the valid bus status can only have one of two
complementary logic values: Dominant or Recessive. For any other logic state the AMS will
assume the bus is faulty. Hence the fault tolerant model implies that once the faulty
components (network node or communication channel) are detected by the AMS, the
recovery action takes immediate effect to initiate the respective active redundant components
to continue the real-time processing.

4.2 Operational Modes
 To develop an adaptive fault tolerant real-time system, the services provided should
be specified with different levels of required tolerance and acceptable functionality. Figure 2

 5

illustrates the acceptable fault tolerance and functionality for the three basic operational
modes in an automotive control system when it experiences component faults and transient
overloads. The noise probability percentage is used to model message transfer lost due to
noise induced in the communication channels. Noise probability for both channels is assumed
to be independent. A 0% noise probability indicates that there is no message lost, while 100%
means all the message transferred is lost due to noise. During the normal mode operation the
channel is assumed to be stable and there is no noise present to corrupt the transfer of
messages. If there is noise detected in the channel, the AMS will initiate the mode change to
the transient overload mode. In transient overload mode, the real-time system can tolerate
noisy channel, but if any one of the two active noisy channel is faulty, then the AMS will
activate the change to the degraded operational mode. When the faulty channel is restored,
the system will return to the transient overload or the normal mode of operation if the channel
is stable. However in this paper a study of the issue of how the mode change occur is not
addressed. Instead it is assumed that when a mode change occurs, a given set of messages
are to be transferred in real-time.

Figure 2: Adaptive Fault Tolerant Mode Space.

5.0 Simulation Results
 Table 2 shows the simulation results of the worst case timing response evaluation of
an adaptive fault tolerant real-time control system that employs imprecise computation
technique for various modes of operation. The results listed are collected from the worst case
delay evaluation from several runs each of 2 seconds simulation. For clearer presentation, the
message parameters such as jitter, period, and deadline which are invariant across all the
three modes are not included in Table 2, but they are available in Table 1.

Msg or Message Normal Mode Transient Overload Degraded Mode
Priority Length Response R (ms) R (ms) @ 10% Error R (ms) @ 10% Error
No. (bytes) 0% Error 5% Error No IT With IT No IT With IT
1 1 0.456 0.456 0.456 0.456 0.456 0.456
2 2 0.976 1.496 2.992 2.472 2.992 2.928
3 1 1.432 1.952 2.408 2.344 2.408 2.344
4 2 (1 for TO)

(1 for DM*)
1.952 2.992 6.04* 3.08 6.096* 3.384

5 1 2.408 3.056 3.576 3.32 4.032 3.84
6 4 (2 for TO)

(1 for DM*)
3.056 4.52 6.104* 4.664 8.896* 4.296

7 4 3.704 5.264 5.264 5.136 8.576 8.128
8 1 4.16 4.808 4.808 4.744 8.056 5.4
9 2 4.68 5.784 6.76 5.2 9.224 8.264
10 2 5.136 6.24 6.496 5.656 9.68 9.056
11 1 5.592 6.696 7.216 5.92 10.328 9.176
12 4 6.24 6.888 7.344 7.152 20.008 9.824
13 1 6.696 7.344 7.344 7.024 20.136 10.28

 6

14 1 7.152 7.80 7.80 7.608 25.272 15.16
15 3 7.736 7.736 8.776 7.544 19.368 18.088
16 1 8.192 8.192 8.192 8.0 19.824 10.28
17 1 8.648 8.648 9.92 8.456 20.28 18.544
Note: TO=Transient Overload with IT, DM*=Degraded Mode with IT, *= Missing Deadline

Table 2: Worst Case Message Delivery Time for Normal, Transient Overload and Degraded
Mode of operation.

5.1 Message Delivery Time Under Normal Mode
 From Table 2, all the 17 types of the transformed benchmark signals are schedulable
(i.e. the worst case message delay satisfy its timing constraint) with Deadline Monotonic (DM)
scheme when operating in the normal operational mode. Under normal mode it is assumed
that there is no noise present in the communication channel to corrupt the messages while in
transfer. However when 5% noise probability is introduced in both channels, the worst case
delivery time for all the messages still meet their timing constraints. This result indicates that
when the system is in the normal mode it can tolerate 5% noise probability which is handled
by the CAN protocol error recovery mechanism.

5.2 Message Delivery Time Under Transient Overload Mode
 In transient overload mode, we assume the global communication channels are noisy
and may cause some messages to be corrupted and discarded. With CAN protocol the
transmitter will retransmit the lost message at its next opportunity through normal bus access
arbitration. The side effect of automatic retransmission may cause some messages to miss
the deadline as indicated by * in Table 2. One way of overcoming timing faults due to
changing application environment is to apply the imprecise computation technique as the
adaptive fault tolerant mechanism for the real-time system. With this technique, a message or
a set of messages can be partitioned into compulsory and optional parts. During normal
operating condition both parts of a message or set of messages are transmitted, hence
resulting in the desired timely precise message. Whenever abnormality occurs, the optional
part can be skipped to conserve system resources. Skipping the optional part produces an
imprecise (i.e. approximate) result which can still be acceptable to the application if the
controlled system remains stable.
 In the simulation, the Imprecise Technique (IT) is applied to Message Nos: 4 and 6
only as these messages miss their deadline whenever transient overload develops as 10%
noise is introduced in both channels. It is appropriate to apply IT to these messages as they
are long messages with short deadlines and if corrupted with noise their retransmission delay
could be significant and can lead to missing of their deadline. The length of the optional part
for Message Nos: 4 and 6 are 1 byte and 2 byte respectively. Results from Table 2 shows that
all messages satisfy their timing constraint even under transient overload after applying this
technique.

5.3 Message Delivery Time Under Degraded Mode
 The adaptive fault tolerant real-time control system enters the degraded operational
mode whenever one of the global communication channel becomes faulty. A critical situation
exists if the functioning channel also experiences excessive interference from the
environment. From Table 2, Message Nos: 4 and 6 fail to satisfy their timing constraint again
if the noise probability is increased to 10%. In the simulation, Message Nos: 4 and 6 is treated
with the imprecise technique to increase system robustness towards a single channel fault
and noisy environment.

6.0 Quality of Result (QoR)
 In imprecise computation technique, both the compulsory and optional parts of a
message must be transmitted completely to achieve the desired precise result. During
overloads, the optional part can be skipped or discarded which produces an approximate
result. The accuracy of the approximate result is proportional to the length of the discarded
optional message. In the simulation the imprecise technique is applied to Message Numbers:
4 and 6 which always miss their deadline during overloads. The quality or accuracy of these
messages after being treated with IT is shown in Table 3 for the three operational modes. The

 7

results from Table 3 establish that the quality of result or the performance of the real-time
system degrades as the operational mode changes from normal to transient and finally to the
degraded mode.

 Accuracy of Messages
Mode of Operation Message No: 4 Message No: 6 Other Messages
Normal Mode 100 % 100 % 100 %
Transient Overload Mode 50 % 50 % 100 %
Degraded Mode 50 % 25 % 100 %

Table 3: Quality of Result

6.1 To Improve Quality of Result
 Another approach to improve the quality of result when using the imprecise technique
is to vary the workload. In the simulation the workload is varied by transmitting the optional
messages at a much lower rate. For this case the optional part of Message Nos: 4 and 6 after
treatment with IT are labelled as Message Nos: 18 and 19 respectively. These optional
messages are not totally discarded as in the previous evaluation, but instead are sampled at
lower rate. The result of such assessment is to improve the performance of the adaptive fault
tolerant system for the three operational modes is shown in Table 5. The parameters which
are invariant to the three operational modes are listed in Table 4.

Msg Size Jitter Period Deadline Priority
No: (bytes) (ms) (ms) (ms) DM
1 1 0.1 50 5 1
2 2 0.1 5 5 2
3 1 0.1 5 5 3
4 1 0.1 5 5 4
5 1 0.1 5 5 6
6 2 0.1 5 5 7
7 4 0.2 10 10 9
8 1 0.2 10 10 10
9 2 0.2 10 10 11

10 2 0.2 10 10 12
11 1 0.2 50 20 13
12 4 0.3 100 100 14
13 1 0.3 100 100 15
14 1 0.2 100 100 16
15 3 0.4 1000 1000 17
16 1 0.3 1000 1000 18
17 1 0.3 1000 1000 19
18 1 0.1 5 5 5
19 2 0.1 5 5 8

Table 4: The Invariant Parameters for the Three Operational Modes

 Number of Normal Mode Transient Overload Degraded Mode
Msg Messages Response R(ms) R(ms) @ 10% Error R(ms) @ 10% Error
No: Transferred 0% Error 5% Error No IT With IT No IT With IT
1 40 0.456 0.456 0.864 0.456 1.536 0.456
2 400 0.976 1.952 3.904 3.448 3.928 3.904
3 400 1.432 2.344 2.344 2.344 3.272 2.36
4 400 1.888 2.408 2.80 2.80 2.816 2.80
5 400 2.80 3.32 4.36 4.296 4.632 4.332
6 400 3.32 4.36 4.88 4.136 8.392* 4.424

 8

7 200 4.488 5.656 6.176 5.784 9.952 8.976
8 200 4.944 5.40 5.464 4.944 10.232* 5.4
9 200 5.464 5.984 6.568 5.984 15.464* 8.52

10 200 5.92 6.376 7.256 6.8 29.368* 9.432
11 40 6.376 7.064 7.064 6.376 20.232* 9.432
12 20 7.024 8.128 8.128 7.024 30.472 18.144
13 20 7.48 7.936 8.0 7.48 49.304 18.6
14 20 7.936 8.584 8.584 7.936 50.216 19.056
15 2 8.52 8.52 8.52 8.52 49.664 18.28
16 2 8.976 8.976 8.976 9.888 50.12 18.736
17 2 9.432 9.432 9.432 9.432 70.28 19.192
18 400

(34 for TO)
(10 for DM*)

2.344 3.256 3.384 2.864 3.776 2.344

19 400
(34 for TO)

(10 for DM*)

3.84 5.0 5.464* 4.816 8.912* 4.296

Note: TO= Transient Overload with IT, DM*= Degraded Mode with IT, *= Missing Deadline
Table 5: Worst Case Delivery Time for Normal, Transient Overload and Degraded Mode with
improved QoR.

 Table 5 shows the result of the worst case message delay time collected after 2
seconds simulation run for the normal, transient overload, and degraded modes of operation
with improved QoR. Under the normal operational mode the real-time system barely tolerates
5% noise probability. The optional part of Message No: 6 (i.e. Message No: 19) can just
satisfy the timing requirement as shown in Table 5. The increase in message delay is due to
the increase in bus utilisation and node processing time since the CAN protocol incurs at least
47 bits of overhead per optional message transferred.
 When operating in the transient overload mode, the optional Message No: 19 fails the
timing constraint when 10% noise probability is induced into both channels. By varying the
load of the optional messages (i.e. Message No:18 and 19) the system can satisfy the timing
requirement. For a 2 seconds simulation run, the workload is varied by sampling the optional
message at lower rate such that 34 out of 400 of these messages are transmitted.
 For degraded operational mode the system with the improved QoR scheme can
sustain upto six message types of timing failures. However only 10 out of 400 of the optional
message load are transmitted as shown in Table 5. The overall quality of service in this
approach where the workload is varied is much better when compared to the previous case
for all operational modes as shown in Table 6.

 Accuracy of Messages
Mode of Operation Message No: 4 Message No: 6 Other Messages
Normal Mode 100% 100% 100%
Transient Overload Mode 54.25% 54.25% 100%
Degraded Mode 51.25% 51.25% 100%

Table 6: Improved Quality of Result

7.0 Conclusion
 This paper has attempted to establish that imprecise computation technique can be
employed as adaptive fault tolerant mechanism in distributed real-time CAN based system.
From the performance evaluation, the adaptive fault tolerant real-time system that uses
imprecise technique can maintain timely and dependable services despite component failures
and changes in application environment. This goal is achieved by trading the quality of service
for guaranteed message timing response. To improve the quality of service the optional
messages treated with imprecise technique have to be adjusted such that the number of
discarded or skipped messages have to be minimised.

References:

 9

[1] R. Davis, S. Punnekkat, N. Audsley and A. Burns, "Flexible Scheduling for Adaptable
 Real-Time Systems", Proceedings IEEE Real-Time Technology and Applications,
 Illinois, USA, pp.230-239, May 1995.
[2] CAN Specification, Version 2, Philips Semiconductors, Hamburg 1991.
[3] J.W.S. Liu, W.K. Shih, K.J. Lin, R. Bettati and J.Y. Chung, "Imprecise Computation",
 Proceeding IEEE, Vol.82(1), pp.83-93, Jan 1994.
[4] N. Malcolm and W. Zhao, "Version Selection Schemes for Hard Real-Time
 Communications", Proceedings IEEE Real-Time Systems Symposium, Texas, USA,
 pp.12-21, Dec 1991.
[5] A. Garvey and V. Lesser, "Scheduling Satisfying Tasks with a Focus on Design-to-
 time Scheduling", Proceedings IEEE Workshop on Imprecise and Approximate
 Computation, Arizona, USA, pp.25-29, Dec 1992.
[6] ISO/DIS 11898, "Road Vehicles -- Interchange of Digital Information --Controller
 Area Network (CAN) for High Speed Communication", Nov. 1993.
[7] Tindell, K., “Guaranteed Message Latencies for Distributed Safety-Critical Hard
 Real-Time Control Network”, Report YCS 229, Dept. Computer Science, Univ.of
 York, May 1994.
[8] Kopetz, H., and Gunter, G., “TTP - A Protocol for Fault Tolerant Real-Time
 Systems”, IEEE Computer, pp14-23, Jan. 1994.

