
CAL	
 based	
 device	
 profiles	

Martin Jaeggi

Selectron System GmbH
Schupfer Straße 1

90482 Nürnberg, Germany

Introduction	

CAN is a Bus defined according to ISO 11898. It
has been successfully tried and tested in millions of
applications and is gaining popularity. For simple
applications it is sufficient to allocate the identifiers
(11 bit message recognition) to the different
communication partners, and the setup is ready for
data exchange. This simplicity is one of the
important advantages provided by CAN and
certainly the justification for it being so
widespread. However this communication, based
on layer 2 does not always provide the operating
ease which is expected from a network today. CAL
puts an easy-to-operate and efficient layer 7 at your
disposal, permitting safe and simple data exchange
between the communication partners.

If we install devices from different manufacturers,
CAL does not guarantee that the appliances are
interchangeable as the contents of a CAL data
message are not defined. With a CAL superposed
communication and device profile, we define
further communication characteristics and thereby
reach uniform data communication between all the
appliances connected as well as the required inter-
operability.

What	
 is	
 a	
 profile	
 ?	

In communication technology (field bus systems),
profiles are used to define generally valid
communication characteristics of certain types of
appliances (I/O-modules, drives, gateways).
Devices with identical profiles herewith feature a
common set of characteristics and functions. With
regard to the user, this means that the appliances

are interchangeable and that they can be operated
together within a network (compatibility, inter-
operability). Profiles offer the advantage of
generally defined operating possibilities but are
restricted to certain applications and, in most cases,
cannot be used to use special functions.

In certain cases it is not required that a device
fulfils all the functions of a profile. Thus, the
profile leaves a number of options open for the
appliance manufacturer. Only the essential features
of the device have to be respected in all cases.
Apart from the mandatory and optional functions,
the manufacturer is free to integrate specific
functions. The user must, however, be aware of the
fact that such functions are normally not supported
by other manufacturers, which results, in
incompatibility.

Profile	
 setup	

The following description deals with the CAL
based communication systems CANopen and the
corresponding device profile for I/O modules. As
the communication profile and the device profiles
very much depend on each other, the following
description does not distinguish clearly between the
two things. For the user, this distinction, with
regard to the use of I/O modules, is not very
important. It is essential, however, to know the
accurate, complete functional features of the
device.

Based on an I/O module, we would like to show
what a profile looks like. We will start with the

description of a minimal solution and will then
integrate more and more functions in the device,
until a final version is obtained which fulfils all the
possibilities of the profile.

What	
 is	
 an	
 I/O	
 module	
 ?	

The definition of the I/O device profile today
includes digital and analogue I/O's. These devices
have their own intelligence (micro controller) so
that more complex services of a protocol may be
processed (contrary to SLIO-solutions). However,
the user has no access to an internal programme and
will thus configure the module by using the
predefined functions. Furthermore, the profile does
as e.g. not define which voltage ranges are possible
for an analogous module.

For encoders, RS-232-C-converters, keyboards and
displays, a first suggestion exists. However the
corresponding profiles have, up to the present time,
not been reviewed by the CiA.

The	
 minimal	
 version	

Let us consider a simple I/O module with 16 digital
inputs and 8 digital outputs. For a minimal version,
we will have to define the following CAN-
identifiers (IDs) for the following tasks:

• Starting/stopping the data communication

• Transmitting input data

• Receiving output data

The communication profile prescribes that for
event-controlled data identifiers in the priority
classes 3, 4 or 5 have to be allocated. For us this
means that both IDs for inputs and outputs have to
be within the range of 661 and 1320.

0 Emergency messages
1 Synchronous messages
2 Synchronous Data’s
3 Asynchronous Data’s
4 (Asynchronous Data’s)
5 (Asynchronous Data’s)
6 Service messages
7 (Service messages)

The attribution of the IDs to data may be adjusted
firmly, for instance ID 601 for the inputs and ID
602 for the outputs. In order to avoid a conflict
between two appliances with the same IDs
CANopen defines default IDs which depend on the
node adress (CAL node ID). This can be modified
e.g. by a DIP-switch.

To start, res. stop the communication, two CAL
NMT services are used.

Thus, for complete implementation only 3
identifiers have to be installed in the node.

Questioning	
 data	

By default, our I/O module will only transmit the
input data, in case one of the inputs has changed
(event-controlled data transmission).

For most standard applications, this function is
absolutely sufficient. However, what will happen if
an operating terminal is switched on after the bus
has been running for a certain time ? The terminal
would receive the current data only after the input
has changed and, up to that moment, would not
display the correct values. The solution is that all
process data are defined in the shape of the CMS-
object "stored event", by the argument "immediate
notify". What does this mean ? Data is transmitted
immediately, as soon as the event takes place (the
input has changed). The value is additionally
"stored" and may be questioned again over a remote
frame telegram.

After starting, our terminal may herewith collect all
required data and need not wait until the modules
announce themselves.

Dynamic	
 ID	
 distribution	

600 different IDs are permitted for event-controlled
data. When adjusting the ID over a switch, we have
to limit ourselves to an inferior quantity or we shall
need too much space for the adjustments (DIP-
switch with 10 switches). In case we also want to
allocate the IDs for inputs and outputs to different
priority classes, a sensible adjustment over the
hardware is not possible any longer.

For the dynamic allocation of IDs, we need a DBT
master which allocates to the module the IDs of the
required priority class when starting. Thus the
allocation is extremely flexible and it allows the
user to set high priority messages where it’s
needed.

The	
 service	
 channel.	

Herewith our module is ready for standard
applications. However, very soon we might want to
be able to make certain adjustments and will need
additional information from the module concerning
internal data.

It would not make sense to allocate a special ID for
each one of our requirements. With regard to
CANopen we work, apart from the normal data
exchange (this type of data is also called process-
data-objects, PDOs), with a so-called service
channel (service-data-object, SDO). To transmit
service messages, we need only one pait of IDs per
device. These IDs must have the priority class 6
(1321 - 1540). According to the CAL definition, the
first byte is used for domain protocol. The second
and the third byte of the SDO are used as additional
index and the fourth one as a subindex. Via the
index and the subindex, it is possible to address a
huge chart (called object dictionary), from which
we can read and write our values.

6000 Device Type Unsigned 32
6001 Manufacturers Device Name Vis. String
6002 '1.0' Hardware Version Vis. String
6003 '1.0' Software Version Vis. String
6004 Commanded Bus State Unsigned 8
6005 Actual Bus State Unsigned 8

6100 Receive POD001 POD Map.
6101 Receive POD002 POD Map.

6164 Transmit POD001 POD Map.
6165 Transmit POD002 POD Map.

6400 8 Input Lines Unsigned 8
6401 8 Output Lines Unsigned 8

6502 Interrupt Mask Unsigned 8
6505 Input Filter Unsigned 8
6506 Output mode on bus error Unsigned 8
6507 Output state on bus error Unsigned 8
The communication and appliance profile specifies
precisely from where data may be taken and where
data may be modified.

Certainentries in the dictionary are specified by the
communication profile and others are defined by
the different device profiles. There is always a
distinction between mandatory, optional and
manufacturer-specific registrations to keep the
profiles as flexible as possible

Example	
 of	
 a	
 Object	
 Dictionary	

The following chart refers to a typical I/O module.
The registrations between 1000 and 1FFF are
defined by the communication profile. They are
common for all appliances with CANopen and
contain the most important general data.

The registrations with the indices 6400 and 6401
contain input, res. output data of an I/O module. An
appliance with a profile for I/O modules must
always put data at disposal under this index.
Herewith, one must make sure that with regard to
any appliance, I/O data is in the same place,
independent of the device manufacturer.

Example	

The following example describes the input
definition of the turn-on attenuation via the service
channel. The respective registration figures under
the index number 6505 and has the designation
"input configuration". The sub-index permits more
accurate configuration of the adjustments. Thus,
more information about the sub-index setup is
required.

Sub-­‐index	
 of	
 the	
 object	
 6505	

Indicates on which inputs an additional filtering
time constant must be switched .

Object description

If we intend to switch on the input attenuation of
the first eight inputs, we have to overwrite the value
of index 6505 / sub-index 2 with the value 225. An
additional message is required for each group of
eight inputs.

INDEX 6505h

Variable Name Input Configuration

Object Code 8 (Array)

NR. of Elements 8

Data Type Unsigned 8

Length 1

Description of the Sub-Index

Sub - Index 0

Description NR of Blocks

Value range Unsigned 8

Mandatory Range 0 ... 8

Sub - Index 1

Description Filter for inputs 0 ... 7

Value range Unsigned 8

Mandatory Range 0 ... 255

Data	
 mapping	

Up to this point our module has only transmitted,
res. received the values of inputs and outputs over a
PDO (data channel). For additional data we depend
on the service channel. But it is also possible to
allocate data other than the values of inputs to the
PDO. As there are only 16 channels in our module
up to now we may, for instance, define in the third
and fourth data byte which of the 16 inputs has
been modified since the last data message. This
data allocation to a PDO according to requirements
is named "mapping". In a so-called „mapping
structure“ the user can define the cross-reference
between the values in the object dictionary and the
position of the value in the PDO message.

As default, the PDOs have a standard setting
(predefined default mapping), which is defined in
the device profile and guaranties an identical
behaviour off all devices.

Dynamic	
 PDOs	

If we extend the I/O module to 64 inputs, there is
no PDO capacity for an additional message, thus
we need an additional PDO. CANopen also allows
this extension.

A module with a flexible number of PDOs will
announce itself only with its service channel when
performing full CAL bootup (if supported) and the
DBT master will therefore allocate only one pair of
IDs for this object.

The configuration master can ask for all data of the
module over the service channel and herewith find
out easily which possibilities the module offers.
Based on the information received, the
configuration master can then determine the
required PDOs and allocate the ID numbers to the
I/O module either via SDO or via DBT, if
supported. After this "extended" starting phase, the
I/O module configured in this manner will then be
integrated into the network.

For the present example we will configure an 8 byte
PDO for 64 inputs as well as a PDO with status
information concerning short-circuit and supply
voltage.

The	
 boot-­‐up	
 	

As we have seen, that certain adjustments and
configurations may take place while starting the
network. During this period the DBT, res. the
configuration master prset all the relevant
parameters of the appliances connected and
guarantees safe and reliable communication..

(0)[cs=3]

(0)[cs=3]

(0)[cs=3]

(0)[cs=3]

(0)[cs=3]

(8)[cs=128]
(7)[cs=2]

(7)[cs=2]

(9)[cs=128](6)[cs=1]

(6)[cs=1]

(6)[cs=129]

Initialisation

Disconnected

Connecting

Preparing

Prepared

Operational

Pre-­‐operational

reset	
 communication	
 parameter
[1000	
 H	
 ..	
 1FFF	
 H]

reset	
 all

CANopen	
 Boot-­‐Up	
 Procedure

To support CAL- and simple CANopen devices in a
single network, CANopen supports the CAL boot
up procedure with a single extension, the additional

state „pre-operational“. CAL-devices will proceed
from the state „prepared“ directly to the state
„operational“, simple devices with DBT support or
devices which store there settings in a non volatile
memory are directly in the state „pre-operational“
after power-on and can be switched then to the
common state „operational“.

Advantages	
 and	
 disadvantages	
 of	

CANopen	

CANopen is the result of a European project named
ASPIC. The crucial point of the study was the
range of drive networks via the CAN-Bus. The
revision made by the CiA has enlarged the field of
applications.

However, applications including motors still have
some priority.

The starting behaviour and configuration changes
of nodes in the course of operation is a severe
problem for all the field buses Practical work will
show to what extent the CANopen concept will be
successful.

For most of the appliance manufacturers CAL does
not represent a satisfactory solution as the
variability leaves too much leeway, thus no "plug-
and-play" solution can be offered to the user.
During the HMI '95 several companies have
decided to make CANopen become reality

CANopen is being supported by the initiative of
many medium sized companies. Therefore the
customer will not depend on a dominant supplier
but, on the other hand, there is no big, financially
potential promoter.

