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ABSTRACT 
 
Distributed real-time computer control system consists of several nodes being 
interconnected by communication network. Each node can execute one or 
more application tasks and the data generated can be transferred as 
messages to other nodes. For real-time application, the communication 
system must be able to provide predictable timing response for periodic 
messages that coordinate the operation of a number of control loops on 
different nodes. To fulfill the timing constraints, appropriate communication 
protocol and scheduling strategy have to be employed. This paper presents 
the performance evaluation of message response time using rate monotonic 
based scheduling on Controller Area Network (CAN) for distributed real-time 
control system. The SAE automotive control system benchmark is being used 
to evaluate the effect of faults and error handling on message response time.   
 
1. Introduction 
 Real-time computer control systems have been used widely in applications such as in 
automated factories, robotic manipulators, and  automotive systems. As the process to be 
controlled is usually locally distributed, several computer control nodes are interconnected via 
suitable communication network to coordinate their effort to achieve the desired goal. 
  Controller Area Network (CAN) is an advanced serial communications protocol which 
meet the above demand. It can efficiently supports distributed real-time computer control 
system with very high level of data integrity [1]. In distributed real-time control systems, 
communication networks play a critical roles. Data transmission must be in real-time. Late 
delivery of data is a fault that can results in severe consequence. To reduce message 
transmission delay and to achieve high communication channel utilization, CAN employs 
message priority scheme. Each message in the control system will be assigned a unique 
priority. When more than one messages are being transmitted simultaneously, messages with 
the higher priorities will be transmitted earlier than messages having lower priorities. 
 The transmission of data is greatly influenced by the intensity and distribution of 
messages in the network. Data transmission is also subjected to time-varying delays due to 
the latency of messages. Besides, messages may also be corrupted by noise in the 
communication link or lost due to buffer saturation at the receiving nodes, and therefore have 
to be retransmitted. These problems increase the message delivery delay further and impose 
greater difficulty for the real-time control system to satisfy its timing constraint. 
 To guarantee correct message delivery in real-time control system, the worst case 
delay of each message must be known. This delay must not exceed the allowed maximum 
delay or the deadline for each message in that system. If the control systems are designed 
using CAN based networks, the designer has to assign each message a unique priority. 
Different priority assignments will results in different message delays. To satisfy the timing 
constraint of all messages in  real-time control system, a formal delay analysis and an 
optimum message priority assignment technique is essential. 
In this paper we evaluate the performance of CAN message response time under the rate 
monotonic based scheduling strategy in normal and transient overload conditions. This paper 
is organised as follows: In Section 2, the CAN message delay analysis is described. Section 3 
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presents the message priority assignment. Section 4 presents the SAE benchmark workload 
model. Section 5 presents the simulation results. The paper concludes with Section 6. 
 
2. Worst-Case Response Time Analysis 
 The worst-case response time of a message occurs when this message is generated 
with all other higher priority messages at the same time. And at that moment a long message 
of lower priority has just gained access to the bus, and while waiting to access the bus, other 
higher priority messages continue to arrive. The worse-case response time analysis can be 
derive almost directly from the theory of task scheduling by fixed priority in a single processor. 
In real-time communication, the link replaces the single processor as the central resource, 
while messages are the tasks requiring this resource. From the work of Audsley et al [2] and 
Tindell et al [3], the worst-case response time of a hard real-time message m are reproduced 
in the following equations.  
 
R J w Cm m m m= + +  
 
Where Rm  is the worst-case response time of a given message m and defined as the longest 
time delay between the start of a task queuing message m to the latest time that message 
arrives at receiving nodes. Jm  is the queuing jitter of message m. While wm  is the worst-
case queuing delay of message m due to both higher priority messages pre-empting message 
m, and a lower priority message that has already acquired the bus. Cm  is the longest time 
taken to transmit message m. The worst-case queuing delay is given by: 
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Bm  is the worse-case blocking time of message m and this is equal to the time taken to 
transmit the longest lower priority message, and is define by: 
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Where lp(m) is the set of lower priority messages than message m in the system. The longest 
time to transmit message m for CAN based network is given by: 
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The term sm  is the number of bytes in the message and τ bit  is the bit time of the bus. This 
time delay includes the 47 bit overhead per message, and 34 bits of the overhead plus the 
message content are subject to bit stuffing. The stuff bit is 5 bit wide. By forming recurrence 
relation the term wm  can be rewritten as: 
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0  and stop the iteration when convergence occurs (i.e. 
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3. Assigning Message Priority 
 The message delay analysis from  the previous section does not indicate how the 
priority is assigned to the message. Since access to the CAN bus is controlled by the priority 
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of competing messages, then it is essential to assign the priority which can result the 
maximum possible schedulable utilisation. A natural choice for ordering CAN message priority 
is the static priority scheduling. From the theory of tasks scheduling on single processor, the 
rate monotonic (RM) is the most popular static priority scheduling algorithm for periodic task 
[4]. In this scheme, messages with shorter period will be assigned with higher priority than 
those with longer period. The important assumption made in RM is  message period equals its 
deadline, and this is not always the case. It is still possible to use RM scheduling if the 
assumption is relaxed but with some modification. If the deadline of a message is shorter than 
its period it is tempting to artificially raise the priority. A better approach is through period 
transformation, where the period can be shorten or lengthen [5]. Another alternative is to use 
a close relative of RM, the deadline monotonic (DM) algorithmn [6]. With DM, messages with 
tigher deadlines are assigned higher priorities. The other scheduling strategy which we also 
evaluate is the modified shortest job first (SJF*). In this method, higher priorities are assigned 
to messages which are transmitted less frequently and have shorter message length. Then 
adjustments are made to ensure priorities of all messages satisfy their deadline. The RM, DM 
and the SJF* are the static priority scheduling methods which can readily be used to ordering 
message priority in CAN. 
 Messages in real-time control system are generally generated by periodic and 
sporadic tasks. Hence it is necessary for the message scheduling policy used in CAN based 
control system to support both periodic and sporadic messages. In practice, there is message 
release jitter, and the worst-case message delivery time is much larger than the average 
delivery time. To ensure no communication channel saturation  occurs can lead to very low 
utilisation. To achieve reasonably high bus utilisation, the scheduling scheme must tolerate 
transient overloads. The scheduling algorithmn is said to be stable if it can guarantee the 
deadlines of a set of critical messages even if the channel is overloaded, and as long as this 
set of critical messages are schedulable by this algorithm under worst case conditions. 
Unfortunately, when a set of messages are scheduled by RM, some deadlines will be missed 
should the channel experience transient overload. Usually channel overload occurs when the 
physical communication system having some difficulty such as faulty link or extreme noise 
interference. We will evaluate how RM, DM, and SJF* scheduling strategies perform in a CAN 
based real-time control system under normal and overload condition. A solution to the 
scheduling stability problem will also be considered.  
   
4. Workload Model 
 The workload model used in our simulation is the SAE Class C  benchmark which is 
typically associated with real-time control system. The benchmark specify the communication 
requirements in a distributed automotive control system. The structure of the system as 
shown in Figure 1 consists of seven modules: the vehicle controller (V/C), the inverter/motor 
controller (I/M C), the instrument panel display (Ins), the transmission control (Trans), the 
battery (Battery), brakes (Brakes), and the driver inputs (Driver).  
 

      Battery      Brakes       Driver
       I/M
   Controller

      Trans
    Control    Vehicle

   Controller
  Instr Panel
   Display

 
 

Figure 1: Structure of Automotive Control System 
The seven automotive control nodes are connected to a real-time communication channel 
which handles 53 types of messages. These messages are listed in the Appendix. Some of 
these messages are sporadic in nature while others are periodically control data. Since the 
benchmark does not specify the minimum interarrival time for some sporadic messages, then 
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some sensible value is assumed. From the work of Tindell et al [3], the 53 types benchmark 
signals are shown to be unschedulable using the DM scheme at 125Kbits/s bus speed. In fact 
only 7 types of messages satisfy their timing constraints as computed using the worse case 
timing response analysis. However at higher bus speed, DM has no difficulty in scheduling all 
the benchmark signal. To overcome the scheduling problem, they have employed message 
piggybacking technique to reduce the bus utilisation. This is implemented in the form of 
message server which polls to collect several messages from the same source and then send 
out as a single long message. The server chosen has 10ms period and a latency of 10ms. 
The newly transformed benchmark signals now consist of only 17 message types as shown in 
Table: 1. We have adopted this newly transformed benchmark signals as the workload model 
in our simulation. 
 

Message 
Number 

Signals 
Number 

Size 
/bytes 

J 
/ms 

T 
/ms 

D 
/ms 

Periodic 
/Sporadic 

1 14 1 0.1 50.0 5.0 S 
2 8,9 2 0.1 5.0 5.0 P 
3 7 1 0.1 5.0 5.0 P 
4 43,49 2 0.1 5.0 5.0 P 
5 11 1 0.1 5.0 5.0 P 
6 29,30,32,42 4 0.1 5.0 5.0 P 
7 31,34,35,37,38,39 

40,44,46,48,53, 
4 0.2 10.0 10.0 S 

8 23,24,25,28 1 0.2 10.0 10.0 S 
9 15,16,17,19,20,22 

26,27 
2 0.2 10.0 10.0 S 

10 41,45,47,50,51,52 2 0.2 10.0 10.0 S 
11 18 1 0.2 50.0 20.0 S 
12 1,2,4,6 4 0.3 100.0 100.0 P 
13 12 1 0.3 100.0 100.0 P 
14 10 1 0.2 100.0 100.0 P 
15 3,5,13 3 0.4 1000.0 1000.0 P 
16 21 1 0.3 1000.0 1000.0 P 
17 33,36 1 0.3 1000.0 1000.0 P 

 
Table 1: Transformed Benchmark Signals 

 
5. Simulation Results 
 The priority of the 17 types of newly transformed benchmark messages are assigned 
according to the 3 different scheduling schemes: RM, DM and SJF*. For convenience we use 
message number to represent the benchmark signals and priority number 1 as the highest 
priority. The bus speed used in all of our simulation is 125Kbit/s (or as specified) as higher 
speed does not pose much scheduling difficulty. Since in CAN system, once a message starts 
transmission it will run to completion even if higher priority messages are released during this 
time, hence we use the non-preemptive version of the above mentioned scheduling policy. 
The worst case response time of the benchmark signals using the 3 schemes were evaluated 
through simulation under normal and transient overload conditions. To ensure worse case 
scenario exist in the simulation environment, all the 17 types of messages are initially 
generated simultaneously. This create the situation where all messages are available and 
attempt to access the bus at the same time. At this critical instant the delivery of messages 
will have the largest  response time. The criteria of merits evaluated in our scheduling 
performance simulation includes: level of schedulability, average delay of all schedulable 
messages and stability under transient overload.    
5.1 Message Delivery Time Under Normal Load 
 Table 2 shows the simulation results of message delivery time for the 17 types of 
benchmark signals. Under normal load or no transmission error condition, message priority 
assigned according to DM and SJF* scheduling policies are schedulable. While direct 
message priority ordering according to RM scheme is unschedulable. We use a simple 
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approach to address the unschedulable problem for the RM scheme by artificially raising the 
priority of the critical message that miss its deadline. The bus utilisation for DM, modified RM 
(RM*) and SJF* are the same, that is 76.33%. However the SJF* scheduling scheme is 
slightly better as having lower average delivery time. This is deduce as the  modified SJF has 
shorter access delay time of 1.913 ms as compared to 1.960 ms experienced by the other 
two scheduling schemes.  
  
Msg Size/ J/ T/ D/ Priority Priority Priority Priority R R R R 
No: bytes ms ms ms DM SJF* RM RM* DM SJF* RM RM* 
1 1 0.1 50 5 1 1 10 8 0.456 0.456 5.136* 4.16 
2 2 0.1 5 5 2 4 1 1 0.976 1.888 0.976 0.976 
3 1 0.1 5 5 3 2 2 2 1.432 0.976 1.432 1.432 
4 2 0.1 5 5 4 5 3 3 1.952 2.408 1.952 1.952 
5 1 0.1 5 5 5 3 4 4 2.408 1.432 2.408 2.408 
6 4 0.1 5 5 6 6 5 5 3.056 3.056 3.056 3.056 
7 4 0.2 10 10 7 10 6 6 3.704 5.136 3.704 3.704 
8 1 0.2 10 10 8 7 7 7 4.16 3.512 4.04 4.04 
9 2 0.2 10 10 9 8 8 9 4.68 4.032 4.56 4.68 

10 2 0.2 10 10 10 9 9 10 5.136 4.488 5.016 5.136 
11 1 0.2 50 20 11 11 11 11 8.192 8.192 8.192 8.192 
12 4 0.3 100 100 12 14 12 12 8.84 9.752 8.84 8.84 
13 1 0.3 100 100 13 12 13 13 9.296 8.648 9.296 9.296 
14 1 0.2 100 100 14 13 14 14 9.752 9.104 9.752 9.752 
15 3 0.4 1000 1000 15 17 15 15 10.336 18.528 10.336 10.336 
16 1 0.3 1000 1000 16 15 16 16 18.072 10.208 18.072 18.072 
17 1 0.3 1000 1000 17 16 17 17 18.528 15.344 18.528 18.528 

 
Table 2: Message Delivery Time Under Normal Load 

 
Scheduler DM SJF RM RM* 
Bus Utilisation 76.33 % 76.33 % 76.33 % 76.33 % 
Avg Access Delay 1.960 ms 1.913 ms 1.960 ms 1.960 ms 
 

Table 3: Bus Utilisation And Average Access Delay 
                                                                                                                                                                                                                                              

5.2 Message Delivery Time Under Transient Overload 
 To evaluate how the DM, SJF* and RM* scheduling policies performance under 
transient overload we introduce noise into the communication channel. When noise present in 
the communication channel, some messages are corrupted or lost, and have to be 
retransmitted. This message retransmission will cause the bus utilisation to increase. With 
10% transmission error probability, the bus utilisation approaches 80% and all the scheduling 
schemes evaluated: DM, SJF* or the RM* become  unstable at 125Kbit/s bus speed. Table 4 
shows the worst case delivery time for the benchmark messages when the communication 
channel experiences transient overload. All the scheduling schemes considered are unable to 
satisfy the timing constraint for message number 6. On closer examination, message 6 is 4 
byte long and if corrupted with noise, the recovery time is significant since the message has to 
arbitrate the bus again with all other  messages waiting to access the bus. Again there is no 
clear winner in these scheduling methods when overload develops. 

Msg Size J T D Priority Priority Priority R R R 
No: /bytes /ms /ms /ms DM SJF* RM* DM SJF* RM* 
1 1 0.1 50 5 1 1 8 1.432 0.456 5.136* 
2 2 0.1 5 5 2 4 1 2.992 4.048 2.992 
3 1 0.1 5 5 3 2 2 2.408 1.824 2.408 
4 2 0.1 5 5 4 5 3 3.448 4.168 3.448 
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5 1 0.1 5 5 5 3 4 3.648 2.48 3.648 
6 4 0.1 5 5 6 6 5 8.248* 5.392* 8.248* 
7 4 0.2 10 10 7 10 6 8.768 9.36 8.768 
8 1 0.2 10 10 8 7 7 5.136 4.032 4.888 
9 2 0.2 10 10 9 8 9 9.288 7.864 9.288 

10 2 0.2 10 10 10 9 10 9.744 8.712 9.744 
11 1 0.2 50 20 11 11 11 9.296 9.816 8.192 
12 4 0.3 100 100 12 14 12 18.328 19.696 18.328 
13 1 0.3 100 100 13 12 13 10.4 10.272 10.4 
14 1 0.2 100 100 14 13 14 19.432 15.408 19.432 
15 3 0.4 1000 1000 15 17 15 10.336 19.176 10.336 
16 1 0.3 1000 1000 16 15 16 18.072 18.136 18.072 
17 1 0.3 1000 1000 17 16 17 18.528 18.592 18.528 

 
Table 4: Message Delivery Time Under Transient Overload 

 
Scheduler DM SJF* RM* 
Transmit Error 73 76 73 
Avg Acces Delay 2.026 ms 1.979 ms 2.026 ms 
Bus Utilisation 80.2 % 80.6 % 80.2 % 
 
Table 5: Bus Utilisation And Average Access Delay Under Transient Overload 
 
 However, when the message transmission speed is increased to 250Kbit/s, the bus 
utilisation decreases significantly to around 70%. All the messages are now schedulable with 
the above scheduling schemes as shown in Table 6. In other words, the CAN based control 
system can tolerate 10% transmission error probability when operates at 250Kbit/s bus 
speed. From Table 7, assigning CAN message priority according to SJF* gives slightly better 
performance. The bus utilisation is higher and the average access delay is shorter in SJF* 
than the other two scheduling schemes.   
 
Msg Size J T D Priority Priority Priority DM SJF* RM* 
No: /bytes /ms /ms /ms DM SJF* RM* 250K 250K 250K 
1 1 0.1 50 5 1 1 8 0.424 0.424 4.624 
2 2 0.1 5 5 2 4 1 1.76 2.64 1.76 
3 1 0.1 5 5 3 2 2 2.184 1.696 2.184 
4 2 0.1 5 5 4 5 3 3.192 3.712 3.192 
5 1 0.1 5 5 5 3 4 3.128 2.184 3.128 
6 4 0.1 5 5 6 6 5 4.72 4.624 4.72 
7 4 0.2 10 10 7 10 6 8.92 7.816 8.92 
8 1 0.2 10 10 8 7 7 4.624 3.584 3.648 
9 2 0.2 10 10 9 8 9 5.176 5.016 5.176 

10 2 0.2 10 10 10 9 10 8.4 4.984 8.4 
11 1 0.2 50 20 11 11 11 8.664 8.208 8.664 
12 4 0.3 100 100 12 14 12 9.576 9.576 9.576 
13 1 0.3 100 100 13 12 13 9.608 8.632 9.608 
14 1 0.2 100 100 14 13 14 10.032 9.056 10.032 
15 3 0.4 1000 1000 15 17 15 9.088 15.048 9.088 
16 1 0.3 1000 1000 16 15 16 9.512 9.544 9.512 
17 1 0.3 1000 1000 17 16 17 9.936 9.968 9.936 

  
Table 6: Message Delivery Time Under Transient Overload (250Kbit/s) 
 
Scheduler DM SJF* RM* 
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Transmit Error 70 75 70 
Avg. Access Delay 1.690 ms 1.669 ms 1.690 ms 
Bus Utilisation 70.35 % 70.67 % 70.35 % 
 
Table 7: Bus Utilisation And Average Access Delay Under Transient Overload (250Kbit/s) 
 
5.3 Dealing With Transient Overload 
 In distributed real time control system it is often incorporated with fault tolerance 
strategy to increase the system dependability. The imprecise computation technique [7] can 
be extended to enhance fault tolerance and graceful degradation during transient overload. 
Using this technique each time-critical message, or a set of messages, is decompose into 
compulsory and optional part. Under normal operating condition, the delivery of all messages 
including their optional part satisfy their timing constraint. During overloads, the optional part, 
or a portion of it can be skipped, that is the system operates in degraded mode to conserve 
the channel utilisation. In this paper, we do not address the issue of how the mode change is 
initiated. We assume when the mode change is started, we are given a list of messages to be 
modified. We evaluate the effectiveness of this technique in handling communication channel 
overload for message delivery under the 3 scheduling schemes: DM, SJF*, and RM*. From 
previous simulation results, message 6 is the first message to miss its deadline whenever 
overload occurs. Therefore, message 6 is decomposed into compulsory and optional parts. 
We label this optional part as message 18 and assigned its priority according to the DM, SJF*, 
and RM* scheduling policies. In normal operating condition, all message 18 will be delivered, 
but during overload some will be skipped. This is implemented by decreasing its frequency of 
generation. However in imprecise computation technique, all messages are delivered within 
their deadline regardless of operating conditions. The evaluation results for 1sec simulation 
run when using this technique to accommodate the overload condition are shown in the 
following tables. 
 

Msg Size J T D Priority Number of Msg Send End-End Delivery 
No: /bytes /ms /ms /ms DM 0% Error 10%Error 0% Error 10%Error 
1 1 0.1 50 5 1 20 20 0.456 1.432 
2 2 0.1 5 5 2 200 200 0.976 1.952 
3 1 0.1 5 5 3 200 200 1.432 2.408 
4 2 0.1 5 5 4 200 200 1.952 2.928 
5 1 0.1 5 5 5 200 200 2.408 3.384 
6 2 0.1 5 5 6 200 200 2.928 4.616 
7 4 0.2 10 10 8 100 100 4.096 8.384 
8 1 0.2 10 10 9 100 100 4.552 8 
9 2 0.2 10 10 10 100 100 5.072 9.04 

10 2 0.2 10 10 11 100 100 8.52 9.36 
11 1 0.2 50 20 12 20 20 8.976 9.496 
12 4 0.3 100 100 13 10 10 9.624 9.56 
13 1 0.3 100 100 14 10 10 10.08 10.016 
14 1 0.2 100 100 15 10 10 18.6 18.704 
15 3 0.4 1000 1000 16 1 1 19.184 15.152 
16 1 0.3 1000 1000 17 1 1 19.64 18.08 
17 1 0.3 1000 1000 18 1 1 20.096 18.536 
18 2 0.1 100 5 7 200 15 3.448 4.176 

 
Table 8: Message Delivery With Imprecise Technique (DM Scheduler) 

 
Msg Size/ J T D Priority Number of Msg Send End-End Delivery 
No: bytes /ms /ms /ms SJF* 0% Error 10%Error 0% Error 10%Error 
1 1 0.1 50 5 1 20 20 0.456 0.456 
2 2 0.1 5 5 4 200 200 2.04 3.968 
3 1 0.1 5 5 2 200 200 1.064 1.888 
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4 2 0.1 5 5 5 200 200 2.56 4.104 
5 1 0.1 5 5 3 200 200 1.52 2.344 
6 2 0.1 5 5 6 200 200 3.08 4.624 
7 4 0.2 10 10 11 100 100 5.608 9.544 
8 1 0.2 10 10 8 100 100 3.984 4.424 
9 2 0.2 10 10 9 100 100 4.504 5.4 

10 2 0.2 10 10 10 100 100 4.96 8.456 
11 1 0.2 50 20 12 20 20 8.976 9.624 
12 4 0.3 100 100 15 10 10 10.536 18.728 
13 1 0.3 100 100 13 10 10 9.432 9.56 
14 1 0.2 100 100 14 10 10 9.888 10.016 
15 3 0.4 1000 1000 18 1 1 20.096 18.536 
16 1 0.3 1000 1000 16 1 1 19.056 15.024 
17 1 0.3 1000 1000 17 1 1 19.512 17.952 
18 2 0.1 100 5 7 200 25 3.6 3.968 

 
Table 9: Message Delivery With Imprecise Technique (SJF* Scheduler) 

 
Msg Size J T D Priority Number of Msg Send End-End Delivery 
No: /bytes /ms /ms /ms RM* 0% Error 10%Error 0% Error 10%Error 
1 1 0.1 50 5 9 20 20 0.456 4.488 
2 2 0.1 5 5 1 200 200 0.976 1.952 
3 1 0.1 5 5 2 200 200 1.432 2.408 
4 2 0.1 5 5 3 200 200 1.952 2.928 
5 1 0.1 5 5 4 200 200 2.408 3.384 
6 2 0.1 5 5 5 200 200 2.928 4.616 
7 4 0.2 10 10 7 100 100 4.096 8.384 
8 1 0.2 10 10 8 100 100 4.552 8 
9 2 0.2 10 10 10 100 100 5.072 9.04 

10 2 0.2 10 10 11 100 100 8.52 9.36 
11 1 0.2 50 20 12 20 20 8.976 9.496 
12 4 0.3 100 100 13 10 10 9.624 9.56 
13 1 0.3 100 100 14 10 10 10.08 10.016 
14 1 0.2 100 100 15 10 10 18.6 18.704 
15 3 0.4 1000 1000 16 1 1 19.184 15.152 
16 1 0.3 1000 1000 17 1 1 19.64 18.08 
17 1 0.3 1000 1000 18 1 1 20.096 18.536 
18 2 0.1 100 5 6 200 15 3.448 4.176 

 
Table 10: Message Delivery With Imprecise Technique (RM* Scheduler) 

 
 
 

Scheduler DM SJF* RM* 
Overload Condition 0% 10% 0% 10% 0% 10% 
Skipped Message %  0 46.25 0 43.75 0 46.25 
No.Transmit Error 0 62 0 61 0 62 
Avg Access Delay (ms) 2.266 2.002 2.210 1.962 2.266 2.002 
Bus Utilisation % 84.17 77.85 84.17 78.28 84.17 77.85 
 

 Table 11: Imprecise Technique Performance 
 

Tables 8, 9, and 10 illustrate imprecise technique can handle transient overload and enhance 
fault tolerance of real-time system. Whenever failure or transient overload occurs, it allows the 
system to function in degraded mode. The delivery of all important or compulsory messages 
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are guaranteed, while some of the optional messages are disregarded. When this technique 
is incorporated to the 3 scheduling schemes, the SJF* performs slightly better with 43.75% 
optional messages being disregarded as shown in Table 11. 
   
6. Conclusions 
 The most attractive features of CAN protocol is the short worst case bus access 
latency based on the message priority arbitration mechanism. This give CAN the potential for 
high performance and less missed deadlines in distributed real time control system. Thus, the 
message priority assignment algorithm is crucial to guarantee message latencies. 
 In this paper we have evaluated the scheduling stability of CAN messages under the 
DM, SJF*, and RM* scheduling schemes for normal and transient overload operating 
conditions. Through simulations we conclude that SJF* policy performs slightly better and the 
imprecise technique can be used to enhance system’s fault  tolerance.  
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Appendix: 
 
Signal 
No: 

Signal 
Description 

Size 
/bits 

J 
/ms 

T 
/ms 

Periodic 
Sporadic 

D 
/ms 

From To 

1 Traction Battery Voltage 8 0.6 100 P 100 Battery V/C 
2 Traction Battery Current 8 0.7 100 P 100 Battery  V/C 
3 Traction Battery Temp, Average 8 0.1 1000 P 1000 Battery V/C 
4 Auxiliary Battery Voltage 8 0.8 100 P 100 Battery V/C 
5 Traction Battery Temp, Max 8 1.1 1000 P 1000 Battery  V/C 
6 Auxiliary Battery Current 8 0.9 100 P 100 Battery V/C 
7 Accelerator Position 7 0.1 5 P 5 Driver V/C 
8 Brake Pressure, Master Cylinder 8 0.1 5 P 5 Brakes V/C 
9 Brake Pressure, Line 8 0.2 5 P 5 Brakes V/C 



 10 

10 Transaxle Lubrication Pressure 8 0.2 100 P 100 Trans V/C 
11 Transaction Clutch Line Press. 8 0.1 5 P 5 Trans  V/C 
12 Vehicle Speed 8 0.4 100 P 100 Brakes V/C 
13 Traction Battery Ground Fault 1 1.2 1000 P 1000 Battery  V/C 
14 Hi&Lo Contactor Open/Close 4 0.1 50 S 5 Battery  V/C 
15 Key Switch Run 1 0.2 50 S 20 Driver V/C 
16 Key Switch Start 1 0.3 50 S 20 Driver  V/C 
17 Accelerator Switch 2 0.4 50 S 20 Driver  V/C 
18 Brake Switch 1 0.3 20 S 20 Brakes V/C 
19 Emergency Brake 1 0.5 50 S 20 Driver V/C 
20 Shift Lever (PRNDL) 3 0.6 50 S 20 Driver V/C 
21 Motor/Trans Over Temperature 2 0.3 1000 P 1000 Trans V/C 
22 Speed Control 3 0.7 50 S 20 Driver V/C 
23 12V Power Ack Vehicle Control 1 0.2 50 S 20 Battery V/C 
24 12V Power Ack Inverter 1 0.3 50 S 20 Battery  V/C 
25 12V Power Ack I/M Control 1 0.4 50 S 20 Battery V/C 
26 Brake Mode (Parallel/Split) 1 0.8 50 S 20 Driver V/C 
27 SOC Reset 1 0.9 50 S 20 Driver V/C 
28 Interlock 1 0.5 50 S 20 Battery V/C 
29 High Contactor Control 8 0.3 10 P 10 V/C Battery 
30 Low Contactor Control 8 0.4 10 P 10 V/C Battery 
31 Reverse & 2nd Gear Clutches 2 0.5 50 S 20 V/C Trans 
32 Clutch Pressure Control 8 0.1 5 P 5 V/C Battery 
33 DC/DC Converter 1 1.6 1000 P 1000 V/C Battery 
34 DC/DC Converter Current Cont 8 0.6 50 S 20 V/C Battery 
35 12V Power Relay 1 0.7 50 S 20 V/C Battery 
36 Traction Battery Gnd Fault Test 2 1.7 1000 P 1000 V/C Brakes 
37 Brake Solenoid 1 0.8 50 S 20 V/C Brakes 
38 Backup Alarm 1 0.9 50 S 20 V/C Brakes 
39 Warning Lights 7 1.0 50 S 20 V/C Ins 
40 Key Switch 1 1.1 50 S 20 V/C I/M C 
41 Main Contactor Close 1 0.3 50 S 20 I/M C V/C 
42 Torque Command  8 0.2 5 P 5 V/C I/M C 
43 Torque Measured 8 0.1 5 P 5 I/M C V/C 
44 FWD/REV 1 1.2 50 S 20 V/C I/M C 
45 RWD/REV Ack 1 0.4 50 S 20 I/M C V/C 
46 Idle 1 1.3 50 S 20 V/C I/M C 
47 Inhibit 1 0.5 50 S 20 I/M C V/C 
48  Shift in Progress 1 1.4 50 S 20 V/C I/M C 
49 Processed Motor Speed 8 0.2 5 P 5 I/M C V/C 
50 Inverter Temperature Status 2 0.6 50 S 20 I/M C V/C 
51 Shutdown 1 0.7 50 S 20 I/M C V/C 
52 Status/Malfunction (TBD) 8 0.8 50 S 20 I/M C V/C 
53 Main Contactor Ack 1 1.5 50 S 20 V/C I/M C 
 


