
SCHEDULING PERFORMANCE IN DISTRIBUTED
REAL-TIME CONTROL SYSTEM.

M. Dani Baba and E. T. Powner

School of Engineering
University of Sussex

Brighton BN1 9QT, England.

ABSTRACT

Distributed real-time computer control system consists of several nodes being
interconnected by communication network. Each node can execute one or
more application tasks and the data generated can be transferred as
messages to other nodes. For real-time application, the communication
system must be able to provide predictable timing response for periodic
messages that coordinate the operation of a number of control loops on
different nodes. To fulfill the timing constraints, appropriate communication
protocol and scheduling strategy have to be employed. This paper presents
the performance evaluation of message response time using rate monotonic
based scheduling on Controller Area Network (CAN) for distributed real-time
control system. The SAE automotive control system benchmark is being used
to evaluate the effect of faults and error handling on message response time.

1. Introduction
 Real-time computer control systems have been used widely in applications such as in
automated factories, robotic manipulators, and automotive systems. As the process to be
controlled is usually locally distributed, several computer control nodes are interconnected via
suitable communication network to coordinate their effort to achieve the desired goal.
 Controller Area Network (CAN) is an advanced serial communications protocol which
meet the above demand. It can efficiently supports distributed real-time computer control
system with very high level of data integrity [1]. In distributed real-time control systems,
communication networks play a critical roles. Data transmission must be in real-time. Late
delivery of data is a fault that can results in severe consequence. To reduce message
transmission delay and to achieve high communication channel utilization, CAN employs
message priority scheme. Each message in the control system will be assigned a unique
priority. When more than one messages are being transmitted simultaneously, messages with
the higher priorities will be transmitted earlier than messages having lower priorities.
 The transmission of data is greatly influenced by the intensity and distribution of
messages in the network. Data transmission is also subjected to time-varying delays due to
the latency of messages. Besides, messages may also be corrupted by noise in the
communication link or lost due to buffer saturation at the receiving nodes, and therefore have
to be retransmitted. These problems increase the message delivery delay further and impose
greater difficulty for the real-time control system to satisfy its timing constraint.
 To guarantee correct message delivery in real-time control system, the worst case
delay of each message must be known. This delay must not exceed the allowed maximum
delay or the deadline for each message in that system. If the control systems are designed
using CAN based networks, the designer has to assign each message a unique priority.
Different priority assignments will results in different message delays. To satisfy the timing
constraint of all messages in real-time control system, a formal delay analysis and an
optimum message priority assignment technique is essential.
In this paper we evaluate the performance of CAN message response time under the rate
monotonic based scheduling strategy in normal and transient overload conditions. This paper
is organised as follows: In Section 2, the CAN message delay analysis is described. Section 3

 2

presents the message priority assignment. Section 4 presents the SAE benchmark workload
model. Section 5 presents the simulation results. The paper concludes with Section 6.

2. Worst-Case Response Time Analysis
 The worst-case response time of a message occurs when this message is generated
with all other higher priority messages at the same time. And at that moment a long message
of lower priority has just gained access to the bus, and while waiting to access the bus, other
higher priority messages continue to arrive. The worse-case response time analysis can be
derive almost directly from the theory of task scheduling by fixed priority in a single processor.
In real-time communication, the link replaces the single processor as the central resource,
while messages are the tasks requiring this resource. From the work of Audsley et al [2] and
Tindell et al [3], the worst-case response time of a hard real-time message m are reproduced
in the following equations.

R J w Cm m m m= + +

Where Rm is the worst-case response time of a given message m and defined as the longest
time delay between the start of a task queuing message m to the latest time that message
arrives at receiving nodes. Jm is the queuing jitter of message m. While wm is the worst-
case queuing delay of message m due to both higher priority messages pre-empting message
m, and a lower priority message that has already acquired the bus. Cm is the longest time
taken to transmit message m. The worst-case queuing delay is given by:

wm = Bm + []
w J

T
Cm j bit

jj hp m
j

+ +

∀ ∈
∑

τ

()

Bm is the worse-case blocking time of message m and this is equal to the time taken to
transmit the longest lower priority message, and is define by:

Bm = max

()∀ ∈k lp m
(Ck)

Where lp(m) is the set of lower priority messages than message m in the system. The longest
time to transmit message m for CAN based network is given by:

Cm = { }34 8
5

47 8
+⎛

⎝
⎜

⎞
⎠
⎟ + +

s
sm
m bitτ

The term sm is the number of bytes in the message and τ bit is the bit time of the bus. This
time delay includes the 47 bit overhead per message, and 34 bits of the overhead plus the
message content are subject to bit stuffing. The stuff bit is 5 bit wide. By forming recurrence
relation the term wm can be rewritten as:

w B
w J

T
Cm

n
m

m
n

j bit

jj hp m
j

+

∀ ∈

= +
+ +⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥

∑1 τ

()

A value of zero can be used for wm

0 and stop the iteration when convergence occurs (i.e.

w wm
n

m
n+ =1).

3. Assigning Message Priority
 The message delay analysis from the previous section does not indicate how the
priority is assigned to the message. Since access to the CAN bus is controlled by the priority

 3

of competing messages, then it is essential to assign the priority which can result the
maximum possible schedulable utilisation. A natural choice for ordering CAN message priority
is the static priority scheduling. From the theory of tasks scheduling on single processor, the
rate monotonic (RM) is the most popular static priority scheduling algorithm for periodic task
[4]. In this scheme, messages with shorter period will be assigned with higher priority than
those with longer period. The important assumption made in RM is message period equals its
deadline, and this is not always the case. It is still possible to use RM scheduling if the
assumption is relaxed but with some modification. If the deadline of a message is shorter than
its period it is tempting to artificially raise the priority. A better approach is through period
transformation, where the period can be shorten or lengthen [5]. Another alternative is to use
a close relative of RM, the deadline monotonic (DM) algorithmn [6]. With DM, messages with
tigher deadlines are assigned higher priorities. The other scheduling strategy which we also
evaluate is the modified shortest job first (SJF*). In this method, higher priorities are assigned
to messages which are transmitted less frequently and have shorter message length. Then
adjustments are made to ensure priorities of all messages satisfy their deadline. The RM, DM
and the SJF* are the static priority scheduling methods which can readily be used to ordering
message priority in CAN.
 Messages in real-time control system are generally generated by periodic and
sporadic tasks. Hence it is necessary for the message scheduling policy used in CAN based
control system to support both periodic and sporadic messages. In practice, there is message
release jitter, and the worst-case message delivery time is much larger than the average
delivery time. To ensure no communication channel saturation occurs can lead to very low
utilisation. To achieve reasonably high bus utilisation, the scheduling scheme must tolerate
transient overloads. The scheduling algorithmn is said to be stable if it can guarantee the
deadlines of a set of critical messages even if the channel is overloaded, and as long as this
set of critical messages are schedulable by this algorithm under worst case conditions.
Unfortunately, when a set of messages are scheduled by RM, some deadlines will be missed
should the channel experience transient overload. Usually channel overload occurs when the
physical communication system having some difficulty such as faulty link or extreme noise
interference. We will evaluate how RM, DM, and SJF* scheduling strategies perform in a CAN
based real-time control system under normal and overload condition. A solution to the
scheduling stability problem will also be considered.

4. Workload Model
 The workload model used in our simulation is the SAE Class C benchmark which is
typically associated with real-time control system. The benchmark specify the communication
requirements in a distributed automotive control system. The structure of the system as
shown in Figure 1 consists of seven modules: the vehicle controller (V/C), the inverter/motor
controller (I/M C), the instrument panel display (Ins), the transmission control (Trans), the
battery (Battery), brakes (Brakes), and the driver inputs (Driver).

 Battery Brakes Driver
 I/M
 Controller

 Trans
 Control Vehicle

 Controller
 Instr Panel
 Display

Figure 1: Structure of Automotive Control System
The seven automotive control nodes are connected to a real-time communication channel
which handles 53 types of messages. These messages are listed in the Appendix. Some of
these messages are sporadic in nature while others are periodically control data. Since the
benchmark does not specify the minimum interarrival time for some sporadic messages, then

 4

some sensible value is assumed. From the work of Tindell et al [3], the 53 types benchmark
signals are shown to be unschedulable using the DM scheme at 125Kbits/s bus speed. In fact
only 7 types of messages satisfy their timing constraints as computed using the worse case
timing response analysis. However at higher bus speed, DM has no difficulty in scheduling all
the benchmark signal. To overcome the scheduling problem, they have employed message
piggybacking technique to reduce the bus utilisation. This is implemented in the form of
message server which polls to collect several messages from the same source and then send
out as a single long message. The server chosen has 10ms period and a latency of 10ms.
The newly transformed benchmark signals now consist of only 17 message types as shown in
Table: 1. We have adopted this newly transformed benchmark signals as the workload model
in our simulation.

Message
Number

Signals
Number

Size
/bytes

J
/ms

T
/ms

D
/ms

Periodic
/Sporadic

1 14 1 0.1 50.0 5.0 S
2 8,9 2 0.1 5.0 5.0 P
3 7 1 0.1 5.0 5.0 P
4 43,49 2 0.1 5.0 5.0 P
5 11 1 0.1 5.0 5.0 P
6 29,30,32,42 4 0.1 5.0 5.0 P
7 31,34,35,37,38,39

40,44,46,48,53,
4 0.2 10.0 10.0 S

8 23,24,25,28 1 0.2 10.0 10.0 S
9 15,16,17,19,20,22

26,27
2 0.2 10.0 10.0 S

10 41,45,47,50,51,52 2 0.2 10.0 10.0 S
11 18 1 0.2 50.0 20.0 S
12 1,2,4,6 4 0.3 100.0 100.0 P
13 12 1 0.3 100.0 100.0 P
14 10 1 0.2 100.0 100.0 P
15 3,5,13 3 0.4 1000.0 1000.0 P
16 21 1 0.3 1000.0 1000.0 P
17 33,36 1 0.3 1000.0 1000.0 P

Table 1: Transformed Benchmark Signals

5. Simulation Results
 The priority of the 17 types of newly transformed benchmark messages are assigned
according to the 3 different scheduling schemes: RM, DM and SJF*. For convenience we use
message number to represent the benchmark signals and priority number 1 as the highest
priority. The bus speed used in all of our simulation is 125Kbit/s (or as specified) as higher
speed does not pose much scheduling difficulty. Since in CAN system, once a message starts
transmission it will run to completion even if higher priority messages are released during this
time, hence we use the non-preemptive version of the above mentioned scheduling policy.
The worst case response time of the benchmark signals using the 3 schemes were evaluated
through simulation under normal and transient overload conditions. To ensure worse case
scenario exist in the simulation environment, all the 17 types of messages are initially
generated simultaneously. This create the situation where all messages are available and
attempt to access the bus at the same time. At this critical instant the delivery of messages
will have the largest response time. The criteria of merits evaluated in our scheduling
performance simulation includes: level of schedulability, average delay of all schedulable
messages and stability under transient overload.
5.1 Message Delivery Time Under Normal Load
 Table 2 shows the simulation results of message delivery time for the 17 types of
benchmark signals. Under normal load or no transmission error condition, message priority
assigned according to DM and SJF* scheduling policies are schedulable. While direct
message priority ordering according to RM scheme is unschedulable. We use a simple

 5

approach to address the unschedulable problem for the RM scheme by artificially raising the
priority of the critical message that miss its deadline. The bus utilisation for DM, modified RM
(RM*) and SJF* are the same, that is 76.33%. However the SJF* scheduling scheme is
slightly better as having lower average delivery time. This is deduce as the modified SJF has
shorter access delay time of 1.913 ms as compared to 1.960 ms experienced by the other
two scheduling schemes.

Msg Size/ J/ T/ D/ Priority Priority Priority Priority R R R R
No: bytes ms ms ms DM SJF* RM RM* DM SJF* RM RM*
1 1 0.1 50 5 1 1 10 8 0.456 0.456 5.136* 4.16
2 2 0.1 5 5 2 4 1 1 0.976 1.888 0.976 0.976
3 1 0.1 5 5 3 2 2 2 1.432 0.976 1.432 1.432
4 2 0.1 5 5 4 5 3 3 1.952 2.408 1.952 1.952
5 1 0.1 5 5 5 3 4 4 2.408 1.432 2.408 2.408
6 4 0.1 5 5 6 6 5 5 3.056 3.056 3.056 3.056
7 4 0.2 10 10 7 10 6 6 3.704 5.136 3.704 3.704
8 1 0.2 10 10 8 7 7 7 4.16 3.512 4.04 4.04
9 2 0.2 10 10 9 8 8 9 4.68 4.032 4.56 4.68

10 2 0.2 10 10 10 9 9 10 5.136 4.488 5.016 5.136
11 1 0.2 50 20 11 11 11 11 8.192 8.192 8.192 8.192
12 4 0.3 100 100 12 14 12 12 8.84 9.752 8.84 8.84
13 1 0.3 100 100 13 12 13 13 9.296 8.648 9.296 9.296
14 1 0.2 100 100 14 13 14 14 9.752 9.104 9.752 9.752
15 3 0.4 1000 1000 15 17 15 15 10.336 18.528 10.336 10.336
16 1 0.3 1000 1000 16 15 16 16 18.072 10.208 18.072 18.072
17 1 0.3 1000 1000 17 16 17 17 18.528 15.344 18.528 18.528

Table 2: Message Delivery Time Under Normal Load

Scheduler DM SJF RM RM*
Bus Utilisation 76.33 % 76.33 % 76.33 % 76.33 %
Avg Access Delay 1.960 ms 1.913 ms 1.960 ms 1.960 ms

Table 3: Bus Utilisation And Average Access Delay

5.2 Message Delivery Time Under Transient Overload
 To evaluate how the DM, SJF* and RM* scheduling policies performance under
transient overload we introduce noise into the communication channel. When noise present in
the communication channel, some messages are corrupted or lost, and have to be
retransmitted. This message retransmission will cause the bus utilisation to increase. With
10% transmission error probability, the bus utilisation approaches 80% and all the scheduling
schemes evaluated: DM, SJF* or the RM* become unstable at 125Kbit/s bus speed. Table 4
shows the worst case delivery time for the benchmark messages when the communication
channel experiences transient overload. All the scheduling schemes considered are unable to
satisfy the timing constraint for message number 6. On closer examination, message 6 is 4
byte long and if corrupted with noise, the recovery time is significant since the message has to
arbitrate the bus again with all other messages waiting to access the bus. Again there is no
clear winner in these scheduling methods when overload develops.

Msg Size J T D Priority Priority Priority R R R
No: /bytes /ms /ms /ms DM SJF* RM* DM SJF* RM*
1 1 0.1 50 5 1 1 8 1.432 0.456 5.136*
2 2 0.1 5 5 2 4 1 2.992 4.048 2.992
3 1 0.1 5 5 3 2 2 2.408 1.824 2.408
4 2 0.1 5 5 4 5 3 3.448 4.168 3.448

 6

5 1 0.1 5 5 5 3 4 3.648 2.48 3.648
6 4 0.1 5 5 6 6 5 8.248* 5.392* 8.248*
7 4 0.2 10 10 7 10 6 8.768 9.36 8.768
8 1 0.2 10 10 8 7 7 5.136 4.032 4.888
9 2 0.2 10 10 9 8 9 9.288 7.864 9.288

10 2 0.2 10 10 10 9 10 9.744 8.712 9.744
11 1 0.2 50 20 11 11 11 9.296 9.816 8.192
12 4 0.3 100 100 12 14 12 18.328 19.696 18.328
13 1 0.3 100 100 13 12 13 10.4 10.272 10.4
14 1 0.2 100 100 14 13 14 19.432 15.408 19.432
15 3 0.4 1000 1000 15 17 15 10.336 19.176 10.336
16 1 0.3 1000 1000 16 15 16 18.072 18.136 18.072
17 1 0.3 1000 1000 17 16 17 18.528 18.592 18.528

Table 4: Message Delivery Time Under Transient Overload

Scheduler DM SJF* RM*
Transmit Error 73 76 73
Avg Acces Delay 2.026 ms 1.979 ms 2.026 ms
Bus Utilisation 80.2 % 80.6 % 80.2 %

Table 5: Bus Utilisation And Average Access Delay Under Transient Overload

 However, when the message transmission speed is increased to 250Kbit/s, the bus
utilisation decreases significantly to around 70%. All the messages are now schedulable with
the above scheduling schemes as shown in Table 6. In other words, the CAN based control
system can tolerate 10% transmission error probability when operates at 250Kbit/s bus
speed. From Table 7, assigning CAN message priority according to SJF* gives slightly better
performance. The bus utilisation is higher and the average access delay is shorter in SJF*
than the other two scheduling schemes.

Msg Size J T D Priority Priority Priority DM SJF* RM*
No: /bytes /ms /ms /ms DM SJF* RM* 250K 250K 250K
1 1 0.1 50 5 1 1 8 0.424 0.424 4.624
2 2 0.1 5 5 2 4 1 1.76 2.64 1.76
3 1 0.1 5 5 3 2 2 2.184 1.696 2.184
4 2 0.1 5 5 4 5 3 3.192 3.712 3.192
5 1 0.1 5 5 5 3 4 3.128 2.184 3.128
6 4 0.1 5 5 6 6 5 4.72 4.624 4.72
7 4 0.2 10 10 7 10 6 8.92 7.816 8.92
8 1 0.2 10 10 8 7 7 4.624 3.584 3.648
9 2 0.2 10 10 9 8 9 5.176 5.016 5.176

10 2 0.2 10 10 10 9 10 8.4 4.984 8.4
11 1 0.2 50 20 11 11 11 8.664 8.208 8.664
12 4 0.3 100 100 12 14 12 9.576 9.576 9.576
13 1 0.3 100 100 13 12 13 9.608 8.632 9.608
14 1 0.2 100 100 14 13 14 10.032 9.056 10.032
15 3 0.4 1000 1000 15 17 15 9.088 15.048 9.088
16 1 0.3 1000 1000 16 15 16 9.512 9.544 9.512
17 1 0.3 1000 1000 17 16 17 9.936 9.968 9.936

Table 6: Message Delivery Time Under Transient Overload (250Kbit/s)

Scheduler DM SJF* RM*

 7

Transmit Error 70 75 70
Avg. Access Delay 1.690 ms 1.669 ms 1.690 ms
Bus Utilisation 70.35 % 70.67 % 70.35 %

Table 7: Bus Utilisation And Average Access Delay Under Transient Overload (250Kbit/s)

5.3 Dealing With Transient Overload
 In distributed real time control system it is often incorporated with fault tolerance
strategy to increase the system dependability. The imprecise computation technique [7] can
be extended to enhance fault tolerance and graceful degradation during transient overload.
Using this technique each time-critical message, or a set of messages, is decompose into
compulsory and optional part. Under normal operating condition, the delivery of all messages
including their optional part satisfy their timing constraint. During overloads, the optional part,
or a portion of it can be skipped, that is the system operates in degraded mode to conserve
the channel utilisation. In this paper, we do not address the issue of how the mode change is
initiated. We assume when the mode change is started, we are given a list of messages to be
modified. We evaluate the effectiveness of this technique in handling communication channel
overload for message delivery under the 3 scheduling schemes: DM, SJF*, and RM*. From
previous simulation results, message 6 is the first message to miss its deadline whenever
overload occurs. Therefore, message 6 is decomposed into compulsory and optional parts.
We label this optional part as message 18 and assigned its priority according to the DM, SJF*,
and RM* scheduling policies. In normal operating condition, all message 18 will be delivered,
but during overload some will be skipped. This is implemented by decreasing its frequency of
generation. However in imprecise computation technique, all messages are delivered within
their deadline regardless of operating conditions. The evaluation results for 1sec simulation
run when using this technique to accommodate the overload condition are shown in the
following tables.

Msg Size J T D Priority Number of Msg Send End-End Delivery
No: /bytes /ms /ms /ms DM 0% Error 10%Error 0% Error 10%Error
1 1 0.1 50 5 1 20 20 0.456 1.432
2 2 0.1 5 5 2 200 200 0.976 1.952
3 1 0.1 5 5 3 200 200 1.432 2.408
4 2 0.1 5 5 4 200 200 1.952 2.928
5 1 0.1 5 5 5 200 200 2.408 3.384
6 2 0.1 5 5 6 200 200 2.928 4.616
7 4 0.2 10 10 8 100 100 4.096 8.384
8 1 0.2 10 10 9 100 100 4.552 8
9 2 0.2 10 10 10 100 100 5.072 9.04

10 2 0.2 10 10 11 100 100 8.52 9.36
11 1 0.2 50 20 12 20 20 8.976 9.496
12 4 0.3 100 100 13 10 10 9.624 9.56
13 1 0.3 100 100 14 10 10 10.08 10.016
14 1 0.2 100 100 15 10 10 18.6 18.704
15 3 0.4 1000 1000 16 1 1 19.184 15.152
16 1 0.3 1000 1000 17 1 1 19.64 18.08
17 1 0.3 1000 1000 18 1 1 20.096 18.536
18 2 0.1 100 5 7 200 15 3.448 4.176

Table 8: Message Delivery With Imprecise Technique (DM Scheduler)

Msg Size/ J T D Priority Number of Msg Send End-End Delivery
No: bytes /ms /ms /ms SJF* 0% Error 10%Error 0% Error 10%Error
1 1 0.1 50 5 1 20 20 0.456 0.456
2 2 0.1 5 5 4 200 200 2.04 3.968
3 1 0.1 5 5 2 200 200 1.064 1.888

 8

4 2 0.1 5 5 5 200 200 2.56 4.104
5 1 0.1 5 5 3 200 200 1.52 2.344
6 2 0.1 5 5 6 200 200 3.08 4.624
7 4 0.2 10 10 11 100 100 5.608 9.544
8 1 0.2 10 10 8 100 100 3.984 4.424
9 2 0.2 10 10 9 100 100 4.504 5.4

10 2 0.2 10 10 10 100 100 4.96 8.456
11 1 0.2 50 20 12 20 20 8.976 9.624
12 4 0.3 100 100 15 10 10 10.536 18.728
13 1 0.3 100 100 13 10 10 9.432 9.56
14 1 0.2 100 100 14 10 10 9.888 10.016
15 3 0.4 1000 1000 18 1 1 20.096 18.536
16 1 0.3 1000 1000 16 1 1 19.056 15.024
17 1 0.3 1000 1000 17 1 1 19.512 17.952
18 2 0.1 100 5 7 200 25 3.6 3.968

Table 9: Message Delivery With Imprecise Technique (SJF* Scheduler)

Msg Size J T D Priority Number of Msg Send End-End Delivery
No: /bytes /ms /ms /ms RM* 0% Error 10%Error 0% Error 10%Error
1 1 0.1 50 5 9 20 20 0.456 4.488
2 2 0.1 5 5 1 200 200 0.976 1.952
3 1 0.1 5 5 2 200 200 1.432 2.408
4 2 0.1 5 5 3 200 200 1.952 2.928
5 1 0.1 5 5 4 200 200 2.408 3.384
6 2 0.1 5 5 5 200 200 2.928 4.616
7 4 0.2 10 10 7 100 100 4.096 8.384
8 1 0.2 10 10 8 100 100 4.552 8
9 2 0.2 10 10 10 100 100 5.072 9.04

10 2 0.2 10 10 11 100 100 8.52 9.36
11 1 0.2 50 20 12 20 20 8.976 9.496
12 4 0.3 100 100 13 10 10 9.624 9.56
13 1 0.3 100 100 14 10 10 10.08 10.016
14 1 0.2 100 100 15 10 10 18.6 18.704
15 3 0.4 1000 1000 16 1 1 19.184 15.152
16 1 0.3 1000 1000 17 1 1 19.64 18.08
17 1 0.3 1000 1000 18 1 1 20.096 18.536
18 2 0.1 100 5 6 200 15 3.448 4.176

Table 10: Message Delivery With Imprecise Technique (RM* Scheduler)

Scheduler DM SJF* RM*
Overload Condition 0% 10% 0% 10% 0% 10%
Skipped Message % 0 46.25 0 43.75 0 46.25
No.Transmit Error 0 62 0 61 0 62
Avg Access Delay (ms) 2.266 2.002 2.210 1.962 2.266 2.002
Bus Utilisation % 84.17 77.85 84.17 78.28 84.17 77.85

 Table 11: Imprecise Technique Performance

Tables 8, 9, and 10 illustrate imprecise technique can handle transient overload and enhance
fault tolerance of real-time system. Whenever failure or transient overload occurs, it allows the
system to function in degraded mode. The delivery of all important or compulsory messages

 9

are guaranteed, while some of the optional messages are disregarded. When this technique
is incorporated to the 3 scheduling schemes, the SJF* performs slightly better with 43.75%
optional messages being disregarded as shown in Table 11.

6. Conclusions
 The most attractive features of CAN protocol is the short worst case bus access
latency based on the message priority arbitration mechanism. This give CAN the potential for
high performance and less missed deadlines in distributed real time control system. Thus, the
message priority assignment algorithm is crucial to guarantee message latencies.
 In this paper we have evaluated the scheduling stability of CAN messages under the
DM, SJF*, and RM* scheduling schemes for normal and transient overload operating
conditions. Through simulations we conclude that SJF* policy performs slightly better and the
imprecise technique can be used to enhance system’s fault tolerance.

References
[1] CAN Specification, Version 2, Philips Semiconductors, Hamburg 1991.
[2] Audsley, N., Burns, A., Richardson, M., Tindell, K., and Wellings, A., “Applying New
 Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software Engineering
 Journal 8(5), pp.285-292, Sept. 1993.
[3] Tindell, K., “Guaranteed Message Latencies for Distributed Safety-Critical Hard
 Real-Time Control Network,” Report YCS 229, Dept. Computer Science, Univ. of
 York, May 1994.
[4] Liu, C. L. and Layland, J. W., “Scheduling Algorithms for Multiprogramming in a
 Hard Real-Time Environment,” Journal Association for Computing Machinery,” Vol.
20(1), pp.46-61, Jan. 1973.
[5] Sha, L., Lehoczky, J. P. and Rajkumar, R., “Solutions for Some Practical Problems
 in Prioritized Pre-emptive Scheduling,” IEEE Real-Time Systems Symp., pp.181-191,
1986.
[6] Leung, J. Y. T. and Whitehead, J., “On the Complexity of Fixed-Priority Scheduling of
 Perioridic Real-Time Tasks,” Performance Evaluation 2(4), pp.237-250, Dec. 1982.
[7] Liu, J. W. S., Shih, W. K., Lin, K. J., Bettati, R., and Chung, J. Y., “Imprecise
 Computation,” Proceeding IEEE, Vol. 82(1), pp.83-93, Jan. 1994.

Appendix:

Signal
No:

Signal
Description

Size
/bits

J
/ms

T
/ms

Periodic
Sporadic

D
/ms

From To

1 Traction Battery Voltage 8 0.6 100 P 100 Battery V/C
2 Traction Battery Current 8 0.7 100 P 100 Battery V/C
3 Traction Battery Temp, Average 8 0.1 1000 P 1000 Battery V/C
4 Auxiliary Battery Voltage 8 0.8 100 P 100 Battery V/C
5 Traction Battery Temp, Max 8 1.1 1000 P 1000 Battery V/C
6 Auxiliary Battery Current 8 0.9 100 P 100 Battery V/C
7 Accelerator Position 7 0.1 5 P 5 Driver V/C
8 Brake Pressure, Master Cylinder 8 0.1 5 P 5 Brakes V/C
9 Brake Pressure, Line 8 0.2 5 P 5 Brakes V/C

 10

10 Transaxle Lubrication Pressure 8 0.2 100 P 100 Trans V/C
11 Transaction Clutch Line Press. 8 0.1 5 P 5 Trans V/C
12 Vehicle Speed 8 0.4 100 P 100 Brakes V/C
13 Traction Battery Ground Fault 1 1.2 1000 P 1000 Battery V/C
14 Hi&Lo Contactor Open/Close 4 0.1 50 S 5 Battery V/C
15 Key Switch Run 1 0.2 50 S 20 Driver V/C
16 Key Switch Start 1 0.3 50 S 20 Driver V/C
17 Accelerator Switch 2 0.4 50 S 20 Driver V/C
18 Brake Switch 1 0.3 20 S 20 Brakes V/C
19 Emergency Brake 1 0.5 50 S 20 Driver V/C
20 Shift Lever (PRNDL) 3 0.6 50 S 20 Driver V/C
21 Motor/Trans Over Temperature 2 0.3 1000 P 1000 Trans V/C
22 Speed Control 3 0.7 50 S 20 Driver V/C
23 12V Power Ack Vehicle Control 1 0.2 50 S 20 Battery V/C
24 12V Power Ack Inverter 1 0.3 50 S 20 Battery V/C
25 12V Power Ack I/M Control 1 0.4 50 S 20 Battery V/C
26 Brake Mode (Parallel/Split) 1 0.8 50 S 20 Driver V/C
27 SOC Reset 1 0.9 50 S 20 Driver V/C
28 Interlock 1 0.5 50 S 20 Battery V/C
29 High Contactor Control 8 0.3 10 P 10 V/C Battery
30 Low Contactor Control 8 0.4 10 P 10 V/C Battery
31 Reverse & 2nd Gear Clutches 2 0.5 50 S 20 V/C Trans
32 Clutch Pressure Control 8 0.1 5 P 5 V/C Battery
33 DC/DC Converter 1 1.6 1000 P 1000 V/C Battery
34 DC/DC Converter Current Cont 8 0.6 50 S 20 V/C Battery
35 12V Power Relay 1 0.7 50 S 20 V/C Battery
36 Traction Battery Gnd Fault Test 2 1.7 1000 P 1000 V/C Brakes
37 Brake Solenoid 1 0.8 50 S 20 V/C Brakes
38 Backup Alarm 1 0.9 50 S 20 V/C Brakes
39 Warning Lights 7 1.0 50 S 20 V/C Ins
40 Key Switch 1 1.1 50 S 20 V/C I/M C
41 Main Contactor Close 1 0.3 50 S 20 I/M C V/C
42 Torque Command 8 0.2 5 P 5 V/C I/M C
43 Torque Measured 8 0.1 5 P 5 I/M C V/C
44 FWD/REV 1 1.2 50 S 20 V/C I/M C
45 RWD/REV Ack 1 0.4 50 S 20 I/M C V/C
46 Idle 1 1.3 50 S 20 V/C I/M C
47 Inhibit 1 0.5 50 S 20 I/M C V/C
48 Shift in Progress 1 1.4 50 S 20 V/C I/M C
49 Processed Motor Speed 8 0.2 5 P 5 I/M C V/C
50 Inverter Temperature Status 2 0.6 50 S 20 I/M C V/C
51 Shutdown 1 0.7 50 S 20 I/M C V/C
52 Status/Malfunction (TBD) 8 0.8 50 S 20 I/M C V/C
53 Main Contactor Ack 1 1.5 50 S 20 V/C I/M C

